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Foreword 

The 21st symposium of the European Grassland Federation is hosted by Germany. Twenty-five years 
ago the Universities of Göttingen and Kassel jointly hosted an EGF symposium on the topic of Organic 
Grassland Farming. During the past quarter-century grassland science and management have changed 
greatly. In the search for more sustainable grassland production, research has generated an immense 
body of knowledge on all aspects of this complex soil-plant-animal system. New technologies have 
emerged, providing detailed information on a variety of grassland traits; for instance, biomass, quality 
and botanical composition. Remotely sensed information was barely available 25 years ago. Only during 
the last 5 to 10 years have platforms, sensors and algorithms become widely available and with sufficient 
temporal and spatial resolutions relevant for applications to practical grassland farming. 

This aims of this symposium are to bring together the existing knowledge in this relatively new field of 
research, to feature upcoming innovations, and to identify existing limitations and challenges. A major 
goal is to contribute to bridging the gap between the complex and research-intensive technological 
processes, and the demands for feasible approaches in practical grassland farming. The meeting has 
three themes: (1) Biomass and quality characteristics; (2) Biodiversity and other ecosystem services; 
(3) Management and decision support. Sensing tools and methods assisting management and decision 
support in grazing and cutting regimes are introduced and evaluated in plenary and poster sessions. 
They cover all levels of grassland intensity: from intensive grazing systems to grasslands for nature 
conservation purposes. 

The Covid-19 pandemic has presented an additional challenge for our symposium. We decided early 
on to move from a meeting in physical presence to an online-based meeting, which made it possible to 
develop the web-based platform with the utmost care and to design it as close as possible to a face-to-
face conference. 

We would like to thank all the authors for submitting such a broad range of interesting papers. We are 
grateful to all the reviewers and editors for providing constructive feedback. Finally, we would like to 
express our gratitude to all members of the local organising committee, the scientific committee, and to 
all the innumerable helpers for making this exciting symposium possible. 

Despite the difficulties caused by the Covid-19 pandemic, we wish that the EGF symposium will provide 
novel insights for grassland science and management and stimulate fruitful discussions and networking. 

 

Michael Wachendorf 

Chair of the organising committee 
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Invited 

Towards an informed grassland farming – Shortfalls and perspectives 

Isselstein J. 

University of Göttingen, Department of Crop Sciences, Grassland Science, Von-Siebold-Str. 8, D-37075 

Göttingen, Germany 

Abstract 

Grassland in Europe provides a wide range of ecosystem services. However, the extent to which these 

services are provided often falls short of the expectations of agriculture and society. On the one hand, 

the provisioning potential of individual ecosystem services is not fully exploited, on the other hand, there 

are strong trade-offs between different ecosystem services. One reason for unsatisfactory performance 

is the lack of knowledge and information on functional relationships between management measures 

and ecosystem function targets. As a result, management decisions are not sufficiently targeted. New 

technological developments in smart farming in the field of sensor technology and information 

processing open up a wide range of possibilities for obtaining data to document biological production 

processes with a high temporal and spatial resolution. The information can be used to rationalize 

production processes and reduce trade-offs between different services. This paper examines the 

weaknesses of current grassland management practices, provides a summary of technological 

innovations, and analyses their potential applications using pasture management as an example. 

Keywords: smart grassland farming, technological innovations, livestock grazing, ecosystem services, 

managing trade-offs 

Introduction 

Permanent and temporary grasslands cover some 40% of the agriculturally utilized area in Europe. 

Grassland systems are a major contributor to the food sector. They enable the keeping of grazing 

livestock, which account for about 60% of all agricultural livestock in Europe. These livestock provides 

6about 25% of the food energy of the human diet (Huyghe et al., 2014). The grassland-based production 

of food thus represents an important area of the bioeconomy of the entire national economy. In the 

bioeconomy it is important that biological production processes can be precisely managed and 

controlled. Only then can the goals pursued with the production process be precisely achieved. This 

works well with production processes that take place under largely or completely controlled conditions. 

These include, for example, the horticultural production of vegetables and fruit in greenhouses or the 

production of processed products with the help of microorganisms, such as yoghurt and cheese, or 

fermented beverages. The better the chemical and biological (scientific) fundamentals of the production 

processes are understood, the more effectively the production process can be designed. What is true 

for industrial biological processes is in principle also true for agriculture and especially for grassland 

farming. However, grassland farming differs from industrial bioeconomy business. Grassland systems 

are more complex. On the one hand, they are closer to nature and thus more dependent on 

environmental factors that can hardly be controlled. On the other hand, there are more products/services 

being produced, not only the livestock produce. Rather, diverse services are provided, each of which 

can be highly variable within the category. This applies to food as well as to environmental services. In 

addition, many sequential production steps are required and different components are involved. A 

grassland-based production system includes the soil-dependent production of fodder and the livestock 

production that converts the fodder into high-quality food. Controlling such a production system is 

obviously difficult. Rational management decisions require that the effects of these decisions can be 

predicted as precisely as possible. Practical experience plays an important role here, but the 

considerable progress in production in recent decades has been achieved through scientific knowledge 

about the principles of production processes (see Caradus, 2006; Lemaire et al., 2005). Despite these 

advances in grassland farming, production processes are not optimized, the forage production potential 

of a site is not achieved and the efficiency of conversion of plant energy into livestock energy is 

unsatisfactory (Huson et al., 2020; McConnell et al., 2020). In addition, there are major uncertainties 

with regard to the provision of environmental services. This is obviously due to a lack of information or 

accessibility of information for stakeholders. The aim of the present paper is to analyse (i) to what extent 
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there is a lack of accessible information for rational grassland management in the farming practice, (ii) 

which areas of grassland management are particularly affected by this, (iii) which technological 

developments could remedy the information deficit, and (iv) how technological developments can be 

applied successfully in production processes. 

Challenges for grassland farming 

Grasslands in Europe are extremely diverse and they support a variety of important ecosystem services 

apart from milk and meat (Peeters and Isselstein, 2019). The vast majority of European grasslands are 

man-made habitats. Their diversity is a result of a broad range of different site and environmental 

conditions interacting with a large variety of farming measures (Dengler, 2014; Poschlod, 2017). A 

continuous management is thus required to maintain the diversity of ecosystem services. The provision 

of such a diversity of ecosystem services has been summarized by the term 'multifunction grassland' 

and this term has received increasing attention in science, and also in society and politics in recent 

decades (e.g. Lemaire et al., 2005, Isselstein and Kayser, 2014; Huguenin-Elie et al., 2018). The 

conceptual idea behind the term multifunction grassland is that different grassland management 

objectives can be achieved simultaneously. A single objective should not be given priority at the expense 

of one or more other objectives. For decades, however, this was the case. Production goals were 

expanded at the expense of the environment. In many cases, grassland farming was intensified in order 

to produce more fodder per hectare and to achieve higher livestock yields. This provoked 

environmentally harmful emissions and reduced biodiversity. 

Table 1. Simplified representation of the site and management conditions under which high or maximum 

performance is achieved for the various ecosystem services (own compilation). 

Ecosystem 
service 

Food: produce 
feed and food 

Nature: 
protect and 
promote 
biodiversity 

Climate: reduce 
greenhouse gas 
emissions, sequester 
carbon 

Water: provide 
sufficient and 
clean water 

Culture: 
preserve 
typical 
cultural 
landscapes 

Domain/ 
Characteristic 

     

site/soil fertile, well 
supplied with 
basic nutrients 

rather low 
fertility, low 
in basic 
nutrients 

no tillage and sward 
disturbance 

rather low 
fertility, high 
water 
permeability 

small 
paddocks, 
diverse 
landscape 
structure. 

soil water 
availability 

moderate, no 
surplus, no 
drought 

either dry or 
wet sites 

wet on organic soils  no clear effect diverse, from 
low to high 

herbage 
quantity 

Moderate rather low rather high rather low for 
high water 
quantity, rather 
high for high 
water quality. 

diverse, from 
low to high 

herbage quality High often low, 
mature 
herbage 

high to reduce 
methane emission by 
ruminants, low crude 
protein content to 
reduce N2O 
emissions 

low to moderate diverse, from 
low to high 

Fertilization moderate to 
high 

none to low none to low low to moderate rather low 

Defoliation Frequent infrequent depending on 
methane or N2O 
emission, either 
infrequent or frequent 

rather frequent diverse, 
grazing, 
mowing, 
frequent, 
infrequent 

The question is: what causes such trade-offs, and are they are unavoidable? In order to answer this 

question, we will first describe the conditions under which particularly high performance is achieved in 
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individual ecosystem services, without taking trade-offs into account. Table 1 provides a simplified, 

cursory summary of the site and management conditions under which high or maximum performance is 

expected in the individual areas of ecosystem services. With regard to production, it is well researched 

and known in the farming practice which conditions lead to high performance: amelioration of the soil 

conditions, i.e. a reasonable supply of basic nutrients and moderate conditions of soil water relations, 

swards dominated by efficient forage plant species and varieties, nutrient replacement through 

fertilization, and intensive grassland use. For other ecosystem services, knowledge is much less and is 

less specific. This leads to uncertainties in accurately assessing the consequences of management 

measures. In addition, interactions between management measures and site factors complicate the 

assessment of ecosystem services. In Table 1, this is reflected in the fact that maximum performance 

of environment-related ecosystem services can be achieved with different constellations of 

environmental factors. 

The key challenge for grassland farming is to design the livestock production system and management 

measures in such a way that the multiple functions and services are adequately fulfilled or provided. As 

Table 1 shows, this is not fully possible because the environmental and management conditions that 

lead to high performance vary by ecosystem service. There are trade-offs between the different 

ecosystem services and their extent depends on the site/environment and management conditions. A 

broad study by Le Clec'h et al. (2019) found that, in general, extensive management tends to favour 

environmental services at the expense of production services and, conversely, that intensive systems 

tend to facilitate production services at the expense of environmental services. However, the aim of 

targeted grassland management must be to reduce trade-offs and to bring the different goals of 

grassland management more in line with each other. Obviously, however, there is a lack of knowledge 

in this regard. 

Information gaps leading to inefficiencies of grassland farming 

Grassland management is integrated into a value chain and must take into account the demands of 

society with regard to services of general interest. The socio-economic and societal framework 

conditions shape the production goals and the scope of action for grassland management. Inefficiencies 

in grassland management and unsatisfactory ecosystem services can be attributed to a relevant extent 

to information deficits. These information gaps exist at all levels of agriculture and the socio-economic 

framework. Accordingly, it is not only the grassland farmers who are affected by information gaps in 

their production decisions, but also the extension services, the agricultural authorities that implement 

the European Agricultural Policy and establish agri-environment programmes, the environmental 

authorities that are responsible for compliance with environmental standards and the elements of the 

downstream value chain that process and market agricultural products. 

In the following, examples of information deficits that lead to inefficiencies in grassland management 

and the achievement of comprehensive ecosystem services are highlighted.  

Production: Information deficits concern decisions on the livestock production system, the type of 

grassland utilization (cutting, grazing, forage conservation, fresh grass), the grazing system or cutting 

date and frequency, forage species and variety selection and fertilization. With regard to forage 

production, the production potential is often not reached; there is a yield gap (Schils et al., 2018). In 

addition, grass utilization by the grazing livestock is not efficient, i.e. the herbage energy is insufficiently 

converted into animal output, and there are herbage losses. This is due to a lack of knowledge about 

the site-specific yield effects of management measures. Information with a high temporal resolution on 

herbage mass and growth rate, herbage quality, i.e. nutrient and energy concentration and their 

metabolizability, the botanical composition of the sward, i.e. the proportion of valuable forage species 

and weeds, the proportion of legumes and the estimation of biological N fixation, or the occurrence of 

plant diseases (van den Pol-van Dasselaar et al., 2020; Aubry et al., 2020; McConnell et al., 2020; 

Huson et al., 2020). 

Services for public goods: These include services provided by grassland that are not rewarded through 

market mechanisms, but which are increasingly desired by society. These are services for 

environmental protection, biodiversity, water pollution control or the preservation of the cultural 

landscape. As these services have not been given priority attention by farmers for a long time, there are 
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considerable information gaps with regard to the efficient provision of such services. This concerns the 

choice of appropriate management measures for the conservation and promotion of rare species such 

as high nature value plant species, meadow birds, grasshoppers or butterflies. Likewise, there are 

uncertainties in estimating the impact of management measures on the targeted promotion of 

biodiversity on species-poor grassland, the avoidance of greenhouse gas emissions without significantly 

reducing production performance, the increase of carbon sequestration of grassland systems or the 

avoidance of nitrate leaching. There are also problems with the evaluation, control and appropriate 

remuneration of public goods. 

In order to close information gaps, efforts are required at various levels. Research and development 

have made considerable technological progress in various areas of information acquisition and 

processing in recent years, the widespread use of which in the further development of grassland-based 

production systems and implementation in grassland farming practice is still largely pending. 

Technological innovation with a potential to improve grassland management 

information 

Sensor and information technology has advanced rapidly in recent years. This involves a variety of 

different sensor categories, i.e. different physical measures and different indicator principles. In 

combination with IT-based evaluation methods, this results in a wide range of possible applications for 

grassland farming. Compared to conventional methods of data collection, it is characteristic for the 

sensor and IT-based methods that data can be obtained with a high spatial and temporal resolution and 

that this is done more or less automatically. If these physical measurement data are translated into 

relevant state variables of the production system with the help of mathematical algorithms, then the state 

and the dynamics of the functioning of a production system can be described precisely. Table 2 

exemplifies a compilation of fields of application of new sensor technology and data collection for 

grassland farming and which ecosystem services are addressed in each case. This compilation does 

not claim to be exhaustive. Rather, it is intended to show the basic application possibilities by means of 

examples. Accordingly, the references given represent only a small selection of the total literature 

available on this topic.  

The sensors are mounted on various supports. For variables related to soil or plant stand, remote 

sensing techniques using satellite and airborne platforms are predominant. Proximal sensing methods 

using ground robots or ground vehicles are used less. The sensors record the spectral properties of the 

light reflected by the soil and plant stand. In particular, the information of visible light, the short-wave 

and near-infrared range is used via multi- and hyperspectral imaging. The information on the state of 

the production system that can be extracted from spectral data is particularly reliable when several 

sensors are combined (Wachendorf and Astor, 2019). Thus, if only one sensor is specified in Table 2, 

this does not exclude the possibility that better results can be achieved by adding further sensors. 

Animal-based sensors are used to record animal behaviour. These record the spatial position as well 

as the activity and resting behaviour of the animals. This can be used to estimate parameters of animal 

welfare and livestock performance. In research and development, these techniques are used 

successfully to determine state variables of plant growth and animal behaviour. However, their 

application is not yet widespread in grassland farming practice. A major challenge for the practical use 

of sensor data as a basis for management decisions, for example in pasture management, is the 

merging and processing of different data categories and of data at different spatial and temporal scales. 

Supporting grassland-based production systems with improved information 

The technological innovations in data collection provide detailed information about the status of 

production factors and their changes. The diverse data on different variables must be linked and 

analysed together. In this way, multi-factorial functional relationships can be better identified and 

quantified. Rational decisions of the farming practice at the strategic (livestock production system) or 

operational level (grassland management) require such knowledge of complex functional relationships. 

If this is given, the performance of individual ecosystem services can be improved and trade-offs 

between different services reduced. This will be demonstrated using the example of multifunctional 

grazed grassland that provides various ecosystem services. 
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Table 2. Technological developments in information acquisition and processing and their potential use 

for improving grassland systems. For ecosystem service categories see Table 1 (own compilation). 

Domain/ Target Ecosystem service Technology/Sensors Selected 
references 

Soil    

Soil water Food/Production: soil water availability, grass 
growth; Nature/Culture: maintaining diverse 
wet habitats; Climate: Conservation of soil 
carbon on organic soils; Water: replenishing 
ground and surface water resources 

thermal imaging, 
evapotranspiration, 
energy fluxes, remote 
and proximal sensing 

Brenner et al., 
2018 

Soil fertility and 
soil organic 
carbon 

Food/Production: nutrient and water provision 
to crop 

hyperspectral imaging, 
applied to bare soil 

Thaler et al., 
2019 

Grass sward    

Botanical 
composition, 
valuable forage 
species, 
legumes 

Food/Production: potential feeding value, 
timing grassland defoliation, adapting 
management strategy, assessing nitrogen 
fixation by legumes 

visible light sensors, 
hyperspectral sensors, 
near infrared sensors 

Wachendorf et 
al., 2018 

Identification of 
weeds, invasive 
species 

Food/Production: weed control visible light sensors, 
hyperspectral sensors, 
near infrared sensors, 
LiDAR 

Brüninghoff et 
al., 2018 

Identification of 
rare species 

Nature/Biodiversity: identifying single species, 
valuable grassland habitats, protecting 
species/habitats 

visible light sensors, 
hyperspectral sensors, 
near infrared sensors 

Cerrejon et al., 
2021 

Herbage    

Herbage 
quantity 

Food/Production: herbage growth rate, 
estimating potential current livestock 
performance 

spectral sensors, 
LiDAR, structure from 
motion approach, 
ultrasonic sensor, rising 
plate meter 

Murphy et al., 
2021; Grüner 
et al., 2021  

Herbage quality Food/Production: assessing potential livestock 
performance 

multi- and hyperspectral 
sensors, near infrared 
sensors 

Astor et al., 
2020 

Fertiliser 
requirement 

Food/Production: assessing nitrogen nutrition 
status of crop, fertilizer requirement 
Water: efficient use of fertilizer nutrients, 
lowering emission risks into waters 

multi- and hyperspectral 
sensors, near infrared 
sensors 

Pellissier et 
al., 2015; 
Knoblauch et 
al., 2017; 
Gnyp et al., 
2020 

Defoliation Food/Production: optimizing timing and 
frequency of defoliation 

near infrared sensors, 
satellite based radar 
sensors 

Honkavaara et 
al., 2020; Malß 
et al., 2020 

Livestock    

Grazing 
behaviour/ 
animal welfare/ 
feed intake 

Food/Production: utilization of feed resources, 
monitoring animal well-being, identification of 
sick animals, measuring herbage intake and 
animal performance, e.g. liveweight gain 

Pedometer, GPS-
logger, activity recorder, 
bite recorder  

De Weerd et 
al., 2015; 
Riaboff et al., 
2018 

Added value    

Quality of 
products and 
production 
process 

Food/production: improved control of 
production process justifies marketing as 
premium product  

automatic information 
system for monitoring 
and archiving 
production process 

Mania et al., 
2018 

Society    

Rewarding 
public goods 

documentation/traceability/certification of 
production processes; will improve the 
provision of various ecosystem services  

automatic information 
system for monitoring 
and archiving 
production process 

Franke et al., 
2012 

The starting point is a concept of carbon gain and utilization in a grazing system with a perennial 

ryegrass sward developed by Parsons et al. (1983). Carbon conversion in a sward is controlled by the 

grazing pressure. The leaf area index determines photosynthetic performance and carbon allocation to 

the different plant parts. The age of the plant tissue, the extent of senescence and also the feed intake 

by the grazing animals also depend on the grazing pressure. If the production function of this grassland 
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is the dominating interest, then the grazing pressure would be adapted in a way that the highest feed 

intake per hectare is achieved. Knowledge of these functional relationships forms the basis for designing 

an efficient grazing system. Crop growth rate and daily nutritional requirements of the grazing livestock 

have to be balanced through targeted pasture allocation to the livestock in order to achieve a high feed 

conversion into animal product. 

In addition to the production function, the processes shown in Figure 1 also influence other ecosystem 

services. If leniently grazed, a larger proportion of the carbon bound in the plant is returned to the soil 

'past the animal's mouth' (Ebeling et al., 2020). This alters carbon sequestration. With low grazing 

pressure, the plants enter reproductive stages of development and produce fruits. In species-rich 

grassland, this is the prerequisite for maintaining plant species diversity (Isselstein, 2018). At the same 

time, it increases the attractiveness for grasshoppers and butterflies (Jerrentrup et al., 2014). 

Multifunctional pasture management must take into account the complexity of the system. This is a 

matter of a better insight not only into the single relationships but also into interactions with variable site 

conditions. Therefore, collecting a wide range of comprehensive information at the field and the farm 

level is required. 

The analysis of this information makes it possible to reduce trade-offs between ecosystem services. 

Balancing the different services does not necessarily have to take place on a given area. It is also 

possible through spatial differentiation. Pasture management is a good example for this. Through small-

scale fencing, which could be realized in the future through virtual fences with low labour input, the 

grazing pressure can be controlled in a differentiated manner, and thus different ecosystem services 

can be provided side by side. Such spatial differentiation is developed on extensively grazed pastures 

through preferential grazing behaviour even without fencing (Tonn et al., 2019). Controlling such spatial 

differentiations requires that the condition of the sward is recorded as continuously as possible and with 

high spatial resolution. Only then can the expected ecosystem services be reliably provided. 

 

Figure 1. Effect of grazing intensity and corresponding leaf area index (LAI) on the rate of sward 

processes and intake efficiency (Parsons et al., 1983) 

Conclusions 

Sensor technology, data collection and state variables description of the soil-crop-livestock system are 

already well developed. A broad application in practice is yet to come. This is not least due to the fact 

that the collected data do not readily represent useful information for management decisions. This 

requires the development of user-friendly tools that are capable of properly blending and analysing data 

from different categories so that well-based decisions for action can be made. Examples of such 
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decision support systems (DSS) already exist. PastureBase offers web-based support for the ruminant 

grassland farming industry while utilizing a broad data base combining national census data with farming 

enterprise data (Hanrahan et al., 2018). GrassQ (Murphy et al., 2019) and GrassCheck (Huson et al., 

2020) are DSS that provide management tools to control grass cover and herbage quality for improved 

grazing management. There are more DSS being developed in different European countries with more 

targeted aims such as forage conservation. It is, however, important to mention that decision support 

tools should be integrated in a larger framework of improved information at the farm level. Usually, the 

farm structure and the kind of livestock production system are decisive for the performance and the 

management of the farm's grasslands. In the future, new ways should also be explored to make 

grassland farming better informed. In contrast to the usual top-down processes, bottom-up approaches 

are promising and have successfully been tested in some European research and development projects 

in recent years. The Inno4Grass (Krause et al., 2018), Eurodairy (Brocard et al., 2018) and HNV-Link 

(Herzon et al., 2020) projects investigated the extent to which experiences with technological 

innovations at the grassland farm level can be transferred to grassland farms in other regions or 

countries. 
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Towards an informed grassland farming – Sensors, platforms and 

algorithms 
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Abstract 

Non-destructive monitoring of sward traits has been of management interest for more than a century. 

Key findings of early research works are still providing fundamental concepts for current proximal and 

remote sensing approaches to monitor forage mass and quality. For example, spectral absorption 

characteristics of plant pigments, vegetation cover, or sward height are considered in current analysis 

approaches. While established methods are based on vegetation indices, the latest analysis 

approaches, for instance those using machine learning, are considering multivariate analysis for 

nonlinear systems. The changing paradigm from high-cost to openly available satellite remote sensing 

data enables dense multi-temporal analysis. Another game changer is the use of Unmanned Aerial 

Vehicles (UAVs), which serve as carrying platforms for any sensing technology already being used in 

satellites or aircraft. Finally, combined analysis of spectral and structural canopy traits seems to provide 

robust estimators for forage mass and quality. 

Keywords: remote sensing, proximal sensing, UAV, grassland, sward, forage, biomass, quality 

Introduction and background 

Spatial decision support for grassland management requires spatio-temporal information on sward trait 

development (Schellberg et al., 2008). Destructive sampling is labour intensive, costly, and does not 

provide spatial coverage (Catchpole and Wheeler, 1992). Hence, field methods to non-destructively 

derive sward properties have been in development since the late 19th and early 20th centuries. Early 

approaches used visual plant growth patterns, cover densities, or clipping data to estimate forage 

productivity or grazing capacity (Faber, 1929). Pechanec and Pickford (1937) proposed weight 

estimates as being more precise than groundcover approaches. Another non-destructive approach was 

suggested by Evans and Jones (1958), who used plant-height x groundcover to estimate forage 

production. However, they found that it did not work on lodged vegetation. An improvement of the latter 

approach was the development of disc meters (Castle, 1976). Disc meters use a weighted metal plate 

that can be lowered on the sward, enabling readings of compressed sward height. They provide robust 

estimates of dry forage mass. This approach is still in use as Rising Plate Meters (RPMs) (Sanderson 

et al., 2001; Bareth and Schellberg, 2018). Latest developments to measure sward height and density 

are towable light curtains or ultrasonic sensors (Rennie et al., 2009; Fricke et al., 2011). However, all 

these presented methods lack complete spatial coverage. 

In parallel, the first applications of airborne photography of vegetation (forests) were reported as early 

as the late 19th century (Albertz, 2009). Besides the progress in photography, developments in applied 

optics have enabled wavelength-specific reflection features of objects or a medium to be captured 

(Nutting, 1912), e.g., using spectroradiometers. These technologies have led to investigations of 

absorption spectra of plants caused, e.g., by chlorophylls (Weigert, 1916), carotenes, or xanthophylls 

(Miller, 1934). Airborne infrared and, later, multiband photography have been applied since the 1940s 

(Charter, 1959). An impressive paper on applying multiband reconnaissance by Colwell (1961) already 

showed crop disease detection for wheat and oats. Additionally, in that paper, a spectrum (400-900 nm) 

of grass is presented, which was captured by using a spectrophotometer. In the early 1970s, the 

milestone Landsat satellite mission was the start of continuous, multispectral remote sensing of the earth 

in medium resolution (Colwell, 1972; Markham and Helder, 2012). The potential of such satellite remote 

sensing for global crop forecasting from space was summarized in a research news reported in Science 

by Hammond (1975). Proximal, airborne and spaceborne remote-sensing data have therefore been 

available since the early 1960s (Haffner, 1966; Belward and Skoien, 2015). In 1969, the first volume of 

the Journal of Remote Sensing of the Environment was published, including work on agricultural 

applications (Gaussman et al. 1969) and on field spectrometer and multiband cameras (Lent and 

Thorley, 1969). 
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To summarize this rather extensive view into the history of non-destructive sward trait estimation and of 

remote sensing, most of the problems discussed nowadays were already being discussed a century 

ago, and some core principles of remote-sensing techniques were also developed more than 60 years 

ago. The scientific problem of non-destructively estimating forage growth, yield, and quality has not yet 

been solved and investigations are still underway as to how non-destructive measurements could 

support spatial decision making for managed grasslands (Rango et al., 2009; Reinermann et al., 2020). 

To reflect the current state of data acquisition and analysis approaches, I follow Marshall and Thenkabail 

(2015) and differentiate between methods to derive (i) spectral and (ii) non-spectral estimators of crop 

traits, and then (iii) summarize combined analysis approaches. 

Analysis of spectral crop traits 

According to Marshall and Thenkabail (2015), spectral techniques rely only on the distinct and unique 

spectral absorption and reflection properties of crop canopies. This is a key finding because, e.g., 

nitrogen does not have a distinct and unique spectral absorption and reflection characteristic (Berger et 

al. 2020) whereas chlorophylls do (Thenkabail et al., 2019). Detailed descriptions of characteristic 

absorption wavelengths for vegetation are given by Kumar et al. (2003). Figure 1 shows a spectrum of 

a grass canopy derived with a field-portable spectroradiometer and characteristic absorption features 

are marked and described. Additionally, multispectral bands of the multispectral satellite mission 

Sentinel-2 are visualized. Four broad bands are available in 10 m spatial resolution: blue (B), green (G), 

red (R,) and near-infrared (NIR). Six bands are available in 20 m spatial resolution: two in the red-edge 

region, two in the NIR, and two in the shortwave-infrared (SWIR). In Figure 1 it is of interest that there 

are absorption bands in the NIR/SWIR domain of cellulose, lignin, and protein, which are directly linked 

to forage quality in terms of crude protein, neutral detergent fibre (NDF), and acid detergent fibre (ADF) 

(Biewer et al., 2009). 

Many multispectral satellite sensors share wavelengths similar to those presented in Figure 1 (e.g., 

Landsat). The bands are usually used to compute vegetation indices (VIs) that utilize two or more bands, 

such as the Normalized Difference Vegetation Index (NDVI), which was first published in 1973 by Rouse 

et al. as the band ratio parameter (BRP), but is based on work on normalized differences by Kriegler et 

al. in 1969 (Crippen, 1990). The NDVI is NIR minus R divided by NIR plus R. An almost endless number 

of studies now exist on how to use the NDVI for vegetation monitoring (biomass, N, stresses etc.) and 

many more VIs have been developed. VIs are still widely applied and under investigation. Roberts et al. 

(2019) provide a comprehensive review on available VIs for vegetation structure, canopy biochemistry 

such as pigments, moisture, and plant physiology. 

 

Figure 1. Canopy reflectance acquired by Ulrike Lussem with an ASDI field-portable spectroradiometer 

(FieldSpec-3) in full range (350-2500 nm). Characteristic absorption features are described as in Kumar 

et al. (2003) and Roberts et al. (2019). The coloured columns approx. represent spectral bands of 

Sentinel-2 in 10 m and 20 m spatial resolution (https://sentinel.esa.int/web/sentinel/technical-

guides/sentinel-2-msi/msi-instrument). 
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Figure 1 clearly shows that characteristic absorption features to derive, e.g., forage quality, are not or 

only partly covered by satellite sensors. One parameter to evaluate forage quality is crude protein 

content, which is determined by destructive biomass samplings and laboratory analysis of total N 

content. But chlorophyll, which has distinct absorption features, is not fully representative of N content. 

Therefore, Berger et al. (2020) and Aasen and Bareth (2019) propose further investigations of the 

potential of absorption features in the NIR/SWIR domain for estimating, e.g., N content, and Tilly and 

Bareth (2019) suggest using N relations with, e.g., biomass. 

Another problem is spatial resolution. In my opinion spatial decision support for forage management 

requires a spatial resolution of below 10 m to capture spatial heterogeneity in growth and flora of 

grasslands. Only few sensors can provide such a spatial resolution. Sentinel-2 provides 10 m resolution 

as open data but, as shown in Fig.1, only captures four rather broad spectral bands. Other datasets are 

provided, e.g., by Planet (www.planet.com) in 4 m and 1 m, or by Maxar (www.maxar.com) in 2 m and 

0.5 m. The latter even provide eight SWIR bands in 4 m. Both are commercial products and can be 

costly, and thus only Sentinel-2 is available on an affordable scale for a continuous, multitemporal 

monitoring of grasslands for management purposes (Klingler et al., 2020; Schwieder et al., 2020). 

Almost every optical remote sensing technology available for satellites is now available for airborne 

remote sensing or can be mounted on Unmanned Aerial Vehicles (UAVs). In addition to multispectral 

sensors, numerous hyperspectral pushbroom and frame sensors are available for airborne or UAV-

based data acquisition (Aasen et al., 2018, Bareth et al., 2011, Colomina and Molina 2014). The 

advantage of hyperspectral sensors is that they provide almost continuous very narrow bands (< 10 

nm). For example, the first hyperspectral satellite sensor in medium spatial resolution (Hyperion; 30 m) 

provided 220 bands from 400 to 2500 nm (Pearlman et al., 2003) and the next hyperspectral satellite 

mission EnMap is scheduled for 2021 (Guanter et al., 2015). Spatial resolutions of airborne or UAV-

based hyperspectral sensors are much higher and range from centimetres to metres (Capolupo et al., 

2015). Wijesingha et al. 2020 reported good prediction results for forage quality by using a UAV-

mounted imaging spectrometer with 126 narrow bands. However, these sensors usually cover only the 

wavelength range between 350 and 1000 nm, and there have been few studies with full range sensors 

(350-2500 nm) (Camino et al. 2018; Honkavaara et al., 2016; Siegmann et al. 2019). Certainly, a 

research niche in capturing distinct absorption features of grass canopies is to be found in multispectral 

narrow band sensors that also cover the VIS/NIR/SWIR domain, such as in the study by Jenal et al. 

(2020). 

In terms of data analysis, hyperspectral data also can be used to derive narrow band VIs that follow the 

equations of the above-mentioned VIs. Due to the enhanced spectral resolution, the focus in data 

analysis is on utilizing the complete spectral information. In line with the concept of VIs, in lambda-

lambda plots all possible wavelength combinations can be analysed and visualized to determine best 

narrow band combinations (Thenkabail et al. 2019). Principle Component Analysis (PCA) is applied to 

eliminate redundant wavelengths. Other applied methods are, e.g., Partial Least Square Regression 

(PLSR) or Support Vector Regression (SVR). Machine-learning approaches that identify patterns in data 

sets are becoming more popular (Lary et al. 2016), and lately deep-learning approaches using artificial 

neuronal network (ANNs) for big data sets have shown promising potential in analysing spectral data 

for grasslands (Ma et al. 2019, Näsi et al. 2018). However, it is yet not clear which spectral analysis 

method is superior compared to established VIs or lambda-lambda plots. Fig.2, which shows a lambda-

lambda plot for chlorophyll of rice leaves, illustrates that some wavelength regions provide a high 

estimation using a two-band VI equation. 

Analysis of non-spectral crop traits 

Marshall and Thenkabail (2015) list as in situ non-spectral canopy traits, e.g., vitality by visual 

assessment, crop height, fraction of vegetation cover (FVC), and compressed canopy height by RPM 

measurements. As mentioned in the introduction, these are some of the measures discussed and 

investigated by grassland scientists a century ago. But most interesting is the approach by Evans and 

Jones (1958), who proposed using plant height times ground cover (PHxGC) to estimate forage 

production non-destructively. The measurement of crop height and crop growth has been done in field 

experiments with rulers, or later with RPMs. In the late 1980s, new technologies emerged that enabled 

crop height to be measured more efficiently. Hutchings et al. (1990) successfully developed and tested 
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an ultrasonic rangefinder stick to measure sward heights. Fricke et al. (2011) also used an ultrasonic 

sensor to identify high R2 between forage mass and measured sward height. Latest improvements use 

ultrasonic arrays to measure vertically through the pasture (Legg and Bradley, 2020). However, and 

again, these ultrasonic measuring techniques do not enable spatially continuous data acquisition. 

In the first decade of the 21st century, capable surveying devices, namely terrestrial laser scanners 

(TLS), became popular. TLS produce accurate and dense 3D point clouds. Based on this technique, 

Hoffmeister et al. (2010) developed the idea of multitemporal Crop Surface Models (CSM) for spatial 

crop height monitoring. A CSM is a very high resolution (< 5 cm) Digital Surface Model (DSM). Fig.2 

shows the CSM approach. By acquiring a Digital Terrain Model (DTM) after sowing, which serves as 

the base height, GIS software can be used to subtract the DTM from later CSMs, resulting in absolute 

metric plant height data. Tilly et al. (2015) and Hoffmeister et al. (2016) successfully tested the approach. 

Investigations by Cooper et al. (2017) and Schulze-Brünighoff et al. (2019) showed that TLS-derived 

sward height also works well for biomass estimation in grasslands. 

Fifteen years ago, software developments from computer vision and photogrammetry led to user-friendly 

Structure of Motion (SfM) and Multiview Stereopsis (MVS) analysis tools, which could be used to analyse 

overlapping image data obtained by UAVs (Harwin and Lucieer, 2012; Granshaw, 2018) to produce 

dense 3D point clouds. Bendig et al. (2013) successfully transferred the CSM approach to a UAV-

derived image data analysis workflow to derive crop height for biomass estimation. Nowadays, UAV-

based data acquisition and SfM/MVS analysis is an established method for determining crop or sward 

height (Bareth and Schellberg, 2018; Grüner et al., 2020; Lussem et al., 2020; Viljanen et al., 2018). 

Over the last ten years, UAV-mounted laserscanning (UAV-LiDAR) has become more popular as an 

active remote sensing method to directly capture 3D point clouds for vegetation monitoring (Jaakkola et 

al., 2010; Wallace et al., 2012). Successful investigations to derive plant height as an estimator for 

biomass using UAV-LiDAR have been undertaken for crops by Li et al. (2015) and by ten Harkerl et al. 

(2020), and for grassland by Wang et al. (2017). 

 

Figure 2. (A) A lambda-lambda plot of the NDVI equation for all possible wavelength combinations 

against chlorophyll content (Yu et al. 2015); (B) the Crop Surface Model approach. The DEM represents 

the Digital Terrain Model (DTM) (Bendig et al. 2013) 

While laser scanning is only available on UAV or airborne platforms and not from satellites, radar remote 

sensing (SAR) is another active remote sensing method that is also available from satellites in spatial 

resolutions below 10 m (Sentinel-1, Radarsat-2, TerraSAR-X, TanDEM-X, Cosmo SkyMed, PAZ SAR). 

The advantage of SAR is its almost weather-independent ability to acquire data, allowing clouds, fog, 

smoke, and haze to be penetrated. Currently X-band (λ: approx. 3 cm) and C-band (λ: approx. 5.5 cm) 

are available from space in the desired spatial resolution of below 10 m. However, again, only Sentinel-

1 are open data while the other SAR data are costly. SAR data have been successfully exploited for 

grassland monitoring (Ali et al. 2017; Crabbe et al. 2021). 

Combined analysis of spectral and non-spectral crop traits 

The idea of combining data sets from multiple sensors has become more popular since the 1990s 

(Ehlers 1991). Work on monitoring winter wheat biomass by a combination of hyperspectral (Hyperion) 
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and radar (Envisat) satellite remote sensing using multivariate regression analysis was published by 

Koppe et al. (2012). The same approach was applied by Bendig et al. (2015), combining hyperspectral 

field data analysis with UAV-derived crop height for winter barley. Both studies could prove that such a 

combined analysis of spectral and non-spectral data yields robust estimations of biomass, which was 

also described by Banerjee et al. (2020) for wheat in a phenotyping experiment in Australia. Similar data 

analysis in grasslands was conducted by Fricke and Wachendorf (2013) and Pittmann et al. (2015). 

Bareth et al. (2015) proposed a simple combined VI, the Grassland Index (GrassI), which sums the 

UAV-derived sward height with a VI derived from the same RGB image data, the RGBVI. GrassI was 

evaluated by Viljanen et al. (2018) as a strong predictor of forage mass. However, in the same study, 

the Excess Green Index (ExG) combined with sward height and multiple linear regression (MLR) and a 

random forest estimator (RF) performed slightly better. The key findings again prove that combining 

sward height with VIs results in robust estimators for forage mass. Latest studies on the advantages of 

combining structural and spectral sward canopy properties using machine learning are given by Grüner 

et al. (2020) and by Oliveira et al. (2020) for forage mass and quality. 

Discussion, conclusions and outlook 

In principle, requirements are similar for spatial management support in forestry, crop production or 

grasslands. Numerous studies on precision agriculture (PreAg) have been available since the late 1980s 

(Mulla, 2013). Precision agriculture for managed grasslands is discussed by Schellberg et al. (2008). 

Proximal and remote-sensing techniques play an essential role in these approaches. Quantifying 

spectral canopy properties from characteristic absorption domains in the reflectance spectra is widely 

applied but generally requires good weather and can be retrieved from satellites only under clear sky 

conditions, which is impractical for farming purposes. UAV and airborne spectral data acquisition also 

favours clear sky conditions, or at least stable solar irradiance, e.g., continuous cloud cover. However, 

proximal sensors such as tractor-mounted spectrometers, especially active ones, can also be operated 

under varying irradiations (Kipp et al., 2014). More robust seem to be remote-sensing methods that 

retrieve non-spectral or structural canopy traits such as sward height or sward density. Evans and Jones 

(1958) proposed structural canopy traits for non-destructive estimation of forage production and 

suggested using plant height times groundcover. In this context, methods from photogrammetry and 

surveying, such as stereophotogrammetric analysis or laserscanning, are important in deriving 3D point 

clouds. Both methods and ultrasonic approaches can be used for proximal sensing in the field or 

mounted on machinery such as tractors. 

However, UAV platforms are also capable of deriving these non-spectral canopy traits timely, cost-

effectively, and in appropriate spatio-temporal resolutions. From satellites, high-resolution radar remote 

sensing has not yet been fully exploited for agricultural applications or for grassland monitoring. As an 

almost weather-independent data acquisition method, radar remote sensing can provide timely canopy 

traits in appropriate spatio-temporal resolutions (Koppe et al., 2013; Crabbe et al., 2021). Finally, the 

largest potential to provide robust estimators for sward traits are combined analysis methods of spectral 

and non-spectral canopy traits, which perform better on multi-temporal scales (Bendig et al., 2014, 

Reddersen et al., 2014; Moeckel et al. 2017; Grüner et al. 2020; Olivejra et al. 2020). In this context, 

machine-learning methods have become more important. 

For future use in spatial decision support for agronomic or grassland management, fully automated 

openly available radar remote sensing and combined analysis with optical satellite data in a scale below 

10 m can provide desired spatio-temporal resolution and are more cost-efficient. However, UAV-based 

remote sensing seems to have an even larger potential, also from an economic perspective. The vision 

is that farmers will start the farm’s UAV fleet just by pressing a button or on a regularly automated, e.g., 

daily, scale with ensuing data acquisition, data transfer into cloud storage and analysis. Within a short, 

almost real time or in few hours, they will then have automatic access to visualization of the current 

status of canopy properties including management suggestions. Latest 5G technology is not yet being 

considered but is the final missing link in the envisaged data management architecture of Bareth and 

Doluschitz (2010). That architecture, which builds on various existing technologies, could provide highly 

automated spatial decision support for PreAg and precision crop management. That this UAV future is 

close can be seen by the progress of Amazon Prime’s air delivery using UAVs, and the first UAV 

deliveries made by UPS for medical services in 2020 (CNN 2020). 
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Abstract 

From an understanding of the ecological basis of grazing from both the perspectives of plants and 

herbivores, we examine why sward structure and biomass are key grassland vegetation traits for 

monitoring of grazing management. We review how unmanned aerial systems (UAS) have been used 

to measure these traits through spectral analysis and 3D modelling, and discuss how UAS remote 

sensing could empower disruptive innovations for grazing management based on the ecological 

processes of plant-animal interactions and the spatial heterogeneity inherent to pastoral ecosystems. 

Keywords: unmanned aerial systems, sward height, biomass, pasture, precision grazing 

Introduction 

The past fifty years have seen a surge in the development of remote sensing solutions to monitor the 

earth's ecosystems (Sparrow et al., 2020). Grasslands cover a significant share of the world’s ice-free 

land mass and are at the heart of the most criticized as well as the most sensitive livestock farming 

systems (Sollenberger et al., 2019). From the early years of remote sensing technologies becoming 

available, pasture scientists have been interested in their potential for monitoring and management of 

grazing ruminants because traditional field methods are time-consuming, and remote sensing offers an 

alternative that permits rapid evaluation of large geographical areas (Tappan and Kinsler, 1982). In the 

past decade, there have been important developments in the use of unmanned aerial systems (UAS), 

commonly called drones, for the monitoring of grassland biomass and sward structure in research, 

overshadowing more established airborne imagery methods due to their relatively low cost and greater 

flexibility (e.g. Rango et al., 2006; Wang et al., 2016; Viljanen et al., 2018; Michez et al., 2019, 2020; 

Jenal et al., 2020). These developments enable the use of UAS as possible key tools of decision-support 

systems for grazing management based on remote sensing of grasslands besides or in combination 

with satellite-based imagery. Nevertheless, to achieve such an objective, a strong knowledge integration 

must be established between pasture, remote sensing, and modelling scientists. In this review, starting 

from a definition of grazing, we explain why sward structure and pasture biomass are relevant traits of 

grazed vegetation to be monitored from a grazing management perspective and how these traits are 

traditionally measured by graziers. Then, we review what UAS can offer to sense those traits and how 

their use can provide a methodological change in the monitoring of grazed grasslands. 

Sward structure and biomass are key traits for grazing management 

Grazing is defined as the action of an herbivore to feed on growing herbage. Behind an apparent simple 

definition hides complex direct and indirect interactions, as well as feedback mechanisms, between the 

plant and the animal compartments of the pastoral ecosystem. From an ecological perspective, grazing 

can be seen as a predator-prey relationship (Venter et al., 2019), in which the prey, i.e. the plant, should 

not be killed by the herbivore that feeds on it. The preservation of the ability of the plant to regrow after 

being defoliated by the herbivore is a pivotal target of any grazing management method (Hodgson, 

1990). Grazing takes place at the interface between the plant and the animal. What happens before the 

grazing event is related to plant-based processes (growth and senescence), and what happens with the 

consumed forage relates to the herbivore, its digestion, and metabolism. The art of grazing management 

lies in making sure that both the plant and animal requirements are met when grazing takes place. From 

the perspective of the plant, grazing can be seen as a sudden reduction in above ground foliage and, 

thus, its capacity to capture incident photosynthetically active radiation (PARi) from the sun and convert 

it into plant above- and below-ground biomass. Usual targets recommend grazing in grass swards to be 
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initiated when plant foliage reaches 95% of light interception (LI) (Korte et al., 1982). This point 

corresponds to the end of the linear phase of the sigmoidal forage growth curve described by Brougham 

(1955) and, compared to points where the LI exceeds 95%, it should result in greater forage production 

with a higher proportion of leaves and a lower proportion of dead material (Silva et al., 2015). Among 

the different traits that characterize sward structure such as its height, leaf/stem ratio, ground cover and 

bulk density, the leaf-area index (LAI) is critical owing its positive relationship with the ability of the plant 

to intercept light (Gastal and Lemaire, 2015). Measuring LAI in the field is not an easy task and, research 

purposes set aside, LAI is not used in practice as an indicator for grazing management. More indirect 

relationships can be drawn between LAI and proxies easier to measure in the field such as the standing 

biomass or sward height (King et al. 1986). While clipping vegetation plots is the reference method to 

measure standing biomass, various non-destructive alternatives have been proposed for practical use. 

The most successful is the rising plate meter (RPM) which is also available in versions that allow a 

spatialization of a high number of measurements when connected to a GPS (French et al., 2015). Sward 

sticks are the reference tool for sward height. Their use is also non-destructive, and they can also be 

used to provide spatialized data. However, sward measurement by RPM and sward sticks are both time-

consuming procedures and require an operator to sample the whole area of interest in the field. 

Capturing PARi for growth is not the only factor influencing the efficiency of the conversion of solar 

energy into edible plant tissues. The whole balance between the production of new leaves, the 

senescence of older leaves, and the storage and mobilization of energy reserves in the growth preceding 

and following a defoliation event must be considered. Focussing on the efficiency of these plant growth 

and regrowth cycles, the specific 3-leaf stage was proposed as a target to initiate grazing in perennial 

ryegrass (Lolium perenne) pastures (Fulkerson and Donaghy, 2001). Although leaf stage during 

regrowth was considered to be a useful indicator of grazing readiness by Chapman et al. (2012), the 

latter also stated that it should not be used too rigidly. More importantly, such a 3-leaf stage does not 

correlate constantly across the whole grazing cycle with the other sward-based proxies of standing 

biomass and height. 

Assessing grazing conditions of a pasture is not only about how much biomass or what structure the to-

be-grazed sward should have. It is also about how much should be left after a grazing event of a patch 

in continuous grazing, or on a paddock in rotational grazing, in terms of residual LAI, height, and 

biomass. This will determine for how long, in terms of growing degree days (GDD), the plant should be 

allowed to recover before experiencing a new defoliation. Here too, several targets are proposed 

depending on the objective, the most common ones being the maximization of harvest or grazing 

efficiency (Scarnecchia, 1988). 

From the animal’s perspective, grazing is a very complex process. Animals do not see the vegetation of 

a paddock as a whole but rather as a multitude of potential bites. Grazing is a multiscale process, 

heterogeneous in space and time, involving a combination of one-time confined choices to perform 

individual bites on specific feeding stations to large movements of the animals across the whole pasture 

over meals, days, and months. Indeed, the major limitation for grazing ruminants to fulfil their daily feed 

requirements is usually set by the limited amount of time they have to collect their daily forage allowance 

through tens of thousands of individual bites (Carvalho et al., 2013). Recent work has shown that a 

sward structure does exist, mainly determined through its height, that allows herbivores to maximize 

their short-term intake rate (STIR) through an optimal combination of bite mass and time required to 

manipulate the vegetation before severing and swallowing it. Plotting changes in STIR against sward 

height usually produces a bell-shaped curve that is specific for each forage species. Hence, setting 

grazing management targets based on this animal-oriented concept also requires the monitoring of the 

sward. For example, in Lolium multiflorum and Cynodon dactylon the sward height which allows animals 

to maximize the STIR is 19 cm. For Avena strigosa, it is 29 cm (Carvalho, 2013). Also, heterogeneity 

can enhance the functional response of herbivores (Pontes-Prates et al., 2020) and minimize grazing 

time. Thus, monitoring the vegetation at a high frequency with UAS remote sensing in real time has the 

potential not only to identify and keep target sward heights but also its degree of heterogeneity (sward 

height variation), incorporating the concept of heterogeneity in the management of grazing systems. 
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Why spatializing the monitoring of sward structure and biomass? 

Beyond the well-known spatial heterogeneity in soil and vegetation attributes, grazed grasslands are 

necessarily heterogeneous because of how animals perform their bites. Firstly, they remove a diversity 

of plant material by selecting plant species and specific parts of plants (nature of plant organs) that are 

variable in chemical composition and mass, which makes up the heterogeneity of bites. After one single 

bite that needs a just second or more to be taken, the regrowth takes several days to weeks depending 

on the residual photosynthetic capacity, the energy reserves of the plant and the environmental factors 

(i.e. temperature, radiation, water supply, etc.). Hence, herbivores can graze only a small proportion of 

the whole grazable area each day (Schwinning and Parsons, 1999). Secondly, when performing bites 

over one or several feeding stations, animals look for specific plant species, plant parts of a given 

species, and within a given species for plant structure that allows them to optimize intake rate as 

discussed above. Moreover, the selection process is not entirely deterministic. There remains some 

uncertainty as to exactly where the animals choose to take bites. Third and finally, the efficiency in the 

grazing process usually decreases with grazing-down level, as the lower animals get in the vegetation, 

the lower the harvest per bite while still on average 50% of the residual sward height is taken per bite. 

As a consequence, animals turn the grazed pasture into a vegetation with patches with different 

regrowth stages whatever the grazing method (Pontes-Prates et al., 2020). From this understanding of 

the ecology of grazing, relevant key indicators of grazing condition are once again the sward biomass, 

since it allows the calculation of forage allowance and hence determines the stocking rate of pastures, 

and the sward height for its impact on both animal selective grazing behaviour and plant growth 

dynamics. 

UAS remote sensing of grazing conditions 

Remote sensing can be used for the characterization of vegetation in various contexts, from grazed 

natural rangelands to ungrazed pure-stand phenotyping plots. The characterization of grasslands has 

been tackled in various ways in the literature. Differing approaches result from four main factors: (1) the 

targeted vegetation traits, (2) the sensor used, (3) the platform onboarding the sensor(s), and (4) the 

area to characterize as well as the grain (scale factor). In terms of platforms, remote sensing of grazed 

vegetation can be investigated from the ground perspective of human operators (Safari et al., 2016; 

Rueda-Ayala et al., 2019) to airborne (Möckel et al., 2016) and spaceborne approaches (Reinermann 

et al., 2020). 

Starting with the grain (i.e., the ground size of the highlighted traits) and the extent (the area covered), 

both are constrained by the sensors and the platform. On one side of the gradient, ground-based remote 

sensing typically offers sub centimetric spatial resolution (e.g., Andriamandroso et al., 2017b), but fails 

to cover significant areas hampering operational applications for practitioners. On the other side, satellite 

remote sensing can have a global coverage of the earth’s surface at a very low cost for the end-user 

but with spatial resolution above 10 to 30 metres for free-of-charge constellations (e.g., Sentinel and 

Landsat programs). Between these two extremes, airborne remote sensing, and more specifically UAS 

can cover areas relevant from a grazing management perspective (>10 ha per survey) while providing 

imagery at a very high spatial resolution (< 0.1 m) to face the challenge of precision grazing. Compared 

to manned airborne remote sensing, UAS are more versatile tools that can be deployed on demand by 

the end-user to synchronize the acquisition of aerial imagery with the need for data on the field. As they 

fly at very low altitudes (generally < 100 m above ground level), they can collect data under more diverse 

weather conditions than other remote-sensing solutions, especially on cloudy days. 

Which sensor for which UAS application? 

UAS applications are mainly driven by the sensor which is mounted. Most publications focus on the 

vegetation with passive spectral remote sensing using off-the-shelf visible (Red Green Blue, RGB), near-

infrared (NIR) multi- and hyperspectral cameras. These three types of sensors display strong differences 

in terms of resolution, costs, and ease of use. RGB cameras offer, at very low-cost and with a high 

spatial resolution (> 15 MPx), lower quality spectral information as they only cover the visible range of 

the electromagnetic spectrum and present important overlapping between the spectral bands. 

Hyperspectral cameras can sense a large portion of the electromagnetic spectrum (from 400 to 1500 

nm) with a high spectral resolution (bandwidth < 10 nm) but a lower spatial resolution. Multispectral 
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cameras can be seen as an in-between solution, covering the visible and NIR spectrum at higher spatial 

resolution (around 12 MPx for the best) but with lower spectral resolution (5-6 spectral bands). 

Multispectral and hyperspectral imageries allow computing true surface reflectance (i.e., the proportion 

of light reflected by the ground surface) after a radiometric calibration process, although the quality of 

UAS reflectance is still questioned by several authors (Manfreda et al., 2018). Indeed, state-of-art 

procedures include the use of a downwelling irradiance sensor as well as calibrated reflectance panel. 

Nevertheless, the placing of the sensor and the UAV above the panel can shade a significant proportion 

of the hemisphere, leading to bias which can account for up to 15% under cloudy conditions (Aasen and 

Bolten, 2018). 

Imaging sensors like multispectral and RGB cameras also allow the derivation of 3D information using 

structure from motion (SFM) photogrammetry (Westoby et al., 2012). The typical 3D output is a digital 

surface model (DSM) describing the absolute altitude of the sward top canopy layer. Combined with a 

digital terrain model (DTM), digital sward height models can be derived at unprecedented spatial 

resolution and over extents beyond comparison with traditional field approaches. LiDAR (Light detection 

and ranging) scanning devices represent the silver bullet technology in terms of 3D remote sensing. 

This active remote sensing technique emits high frequency laser pulses and records the reflected pulses 

to precisely locate the scanned surface. This results in a 3D point cloud which can be used to produce 

high resolution sward height maps. Most LiDAR systems can record several returns from a single laser 

pulse when it reaches an object with multiple layers. Unlike SFM point clouds, LiDAR surveys can yield 

information across the whole vertical sward structure: top canopy leaves, intermediate leaves as well as 

the ground (Wijesingha et al., 2019). The major limitation for UAS LiDAR remains its cost (> 50 k$ in 

2021) as well as the weight of the sensor (> 1 kg) which hinders its use in low-cost micro drones (< 2 

kg). The quality of 3D model-based sward height estimates is commonly evaluated through the accuracy 

of simple linear regression with a reference sward height. Authors globally agree on the high potential 

of UAS remote sensing to describe the sward height, with r² of ca. 70% (up to 91% for Bareth and 

Schellberg, 2018) depending on the methodological approach. Objective and quantitative comparisons 

between studies are hindered by the variety of reference sward height measurement approaches as 

well as the spatial scale upon which the model is fitted. For example, the field height measurement can 

be discretized from nearly the exact point of measurement (4 cm², Michez et al., 2020, r² = 48%), to 

higher areas such as a dropping 10-cm diameter (50 g) disk (Formosso et al., 2018, r² = 70%) or the 

traditional rising plate meter measuring compressed sward height (Bareth and Schellberg, 2018, r² = 

86%), which is actually more an indirect estimate of biomass than a sward height measurement. 

UAS data can be used to model other key structural traits, like sward biomass or LAI, generally through 

the use of empirical modelling. Sward height can be used as a predictor of biomass even if biomass 

estimates are greatly improved by the integration of spectral (Michez et al., 2019) or even textural 

information (Grüner et al., 2020). UAS biomass empirical models present a performance based on r² 

typically ranging around 70% using RGB camera to the almost perfect fit for the best reported case by 

Vijnalen et al. (2018) who reached a r² of 96% for DM yields by combining very high-resolution 3D 

models from a RGB camera to hyperspectral imagery with an innovative modelling strategy (random 

forest machine learning). Similar modelling approaches were applied to LAI with high modelling 

accuracies, as highlighted by Fan et al. (2017) (r² = 0.88) and Lu et al. (2018) (r² = 0.81). Such modelling 

approaches usually integrate spectral information through vegetation indices (VI) which are arithmetic 

combinations of different spectral bands. The differential reflection across surface heterogeneities 

allows enhancing the contrast in the observed vegetation. VI also allow the reduction of signal artefacts 

notably related to in-flight varying light exposures. VI typically integrate a combination of the NIR (700 

nm to 1300 nm) and the visible spectral ranges (400 nm to 700 nm) to highlight differences among 

photosynthetically active vegetation whose leaves absorb relatively more red than infrared light. 

Depending on the spectral resolution and the number of spectral bands captured by the sensor, the 

diversity of VI which can be investigated is very broad. The Normalized Difference Vegetation Index 

(NDVI) is the most renowned VI and was firstly introduced by Rouse et al. (1973). It is a typical 

multispectral VI of plant vigour which can be processed from UAS multispectral sensors but also by 

modified RGB sensors by removal of the infrared low-pass filter. Strictly visible VI are also well 

investigated by UAS scientists, even if their performance is lower than those computed with multispectral 

or hyperspectral cameras since the original spectral information is lower in quality (spectral resolution 

and overlapping bandwidth). 
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Disruptive potential of UAS-based measurements for grazing management 

Most UAS studies investigated the use of UAS on a single date and on ungrazed experimental sites, 

and they have not discussed much further than the fitted model accuracies, notably overlooking the 

proper integration of UAS remote sensing as an operational tool for field practitioners. While the use of 

straightforward linear regression allows to reach satisfying modelling accuracies, the model parameters 

are clearly site and weather dependent when integrating UAS spectral information. Indeed, the 

calibration and standardisation of UAS spectral data is still known to be problematic for multi-temporal 

quantitative approaches (Manfreda et al., 2018). The site-dependency of the linear regression 

parameters integrates complex properties of study sites like sward structure and species composition 

in relation to management practices or meteorological conditions. Such issues could be addressed by 

the integration of more mechanistic modelling approaches allowing a better understanding of the 

aforementioned site-specific parameters. More complex nonparametric modelling approaches based on 

deep learning strategies are also still missing in the context of precision grazing science. Innovative data 

curation strategies can also combine the best of both worlds (i.e. airborne and field sensing). For 

example, in the specific case of sward structure, limited field measurements can be used to adapt linear 

model parameters to local conditions as suggested by Forsmoo et al. (2018): 10 field measurements 

were sufficient to re-calibrate a linear UAS sward height model for a mixed Lolium perenne-Trifolium 

pratense sward. 

As the spatial resolution of RGB sensors keeps rising, direct measurement of key traits meaningful from 

the grazing ecology perspective can be considered. For example, the precise delineation of sward 

leaves could be performed directly from the UAS images through millimetric imagery and effective deep 

learning image analysis. Such fine scale delineation could open up new opportunities like the precise 

identification of key phenological stages (e.g., the 3-leaf stage in ryegrass) or move from LAI UAS 

estimates from empirical modelling to direct foliar surface measurements. The use of multi-temporal 

UAS remote sensing offers unique opportunities for monitoring plant-animal interaction at very high 

spatio-temporal resolution. This is essential to the implementation of sound precision grazing 

management where the monitoring of ingestive behaviour of individual animals (Andriamandroso et al., 

2017a), and the vegetation structure in time and space with a high degree of refinement, are used to 

better manage the processes and the complexity of pastoral ecosystems. More importantly, precision 

grazing must enable innovative grazing practices in which vegetation structures are offered to grazing 

animals not only to enhance their production but also other ecosystem services (e.g., Enri et al., 2017). 

For this purpose, heterogeneity is seen as an inherent characteristic of these environments and stocking 

methods are not trying to iron them out but rather explore them to yield positive effects on the ecosystem. 

While the spatial distribution of biomass within small size paddocks seems less critical, as discussed 

above, the distribution of sward height and structure is relevant down to the level of the elementary 

component of the grazing process, the bite, an area as small as 7.5 to 13.0 cm² for sheep and goats 

(Gordon et al., 1996) and 45 to 90 cm² for cattle (Benvenutti et al., 2006). In this context, UAS remote 

sensing could provoke a quantum leap in bringing refined information that none of the previous field 

based or remote sensing methods is able to provide, such as the horizontal distribution of plant species, 

the vertical distribution of the pasture structure, or the nutritional status of the plants (Astor, 2021). For 

example, in vegetation structures where pseudostems (vegetative) or stems (reproductive) represent a 

barrier to bite depth, bite mass is related more to lamina or regrowth length than simply the sward height 

(Gordon and Benvenutti, 2006). Hence, multilayer 3D models of the sward internal structure from UAS 

LiDAR flights could provide meaningful information for grazing management, and by allowing to measure 

bite depth and vertical distribution of LAI better, it would enable a better prediction of post-grazing 

regrowth potential. Such models could also determine the vertical distribution of plant species in 

multispecies pastures, in addition to the more obvious horizontal distribution of patches. 

Conclusions 

Field-based measurements of pasture biomass and sward height are both time-consuming and hard to 

perform at a high level of spatial resolution. Hence, UAS-based remote sensing could become the 

reference measurement for these parameters because it presents advantages such as the speed of 

measurements, inherent spatialization of data, and greater precision, making it possible to monitor a 

much larger area with a greater level of detail. Grazing creates heterogeneity because sward structure 
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is, at the same time, both a cause and a consequence of grazing. Therefore, heterogeneity needs to be 

monitored, thus offering opportunity to multi-temporal UAS remote sensing to identify sward heights 

distribution across the paddocks for actual management. This monitoring has been simulated in Italian 

ryegrass pastures continuously stocked by sheep (Freitas and Lima (pers. comm.). At the bite level, the 

ideal sward structure in terms of STIR is 18 cm, so the pasture was monitored to maintain sward heights 

between 12 and 18 cm as grazing targets for the rotatinuous stocking, the concept of grazing 

management that aims at offering ideal sward structures to the grazing animal explained before 

(Carvalho et al., 2013). Areas of the paddock with less than 12 cm were specifically deferred until 

monitoring indicated sward height was recovered to targeted range. In areas higher than 18 cm, animals 

were concentrated with electric fences until sward height of that zone was controlled. On the average 

of the entire grazing period, this management interventions were successful to offer almost constantly 

more than 30% of the area with ideal sward structures. This is an example of how UAS-based monitoring 

of pasture height could empower flexibility and innovation in grazing management. 
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Abstract 

Grassland farmers face ever increasing demands on their production systems and the quality of their 

grassland yields. Estimating pasture quality using traditional field methods is limited as it is time 

consuming and costly, and requires some destructive sampling. The field of remote sensing offers 

alternative tools and techniques to overcome some of the limitations and thereby help farmers to receive 

spatial continuous and near real-time information about grassland quality parameters. This review gives 

an overview about recent developments in the remote sensing-based estimation of three aspects of 

grassland quality: feed quality, biological nitrogen fixation by legumes, and the identification of unwanted 

plant species. 

Keywords: review, CP, ADF, legumes, invasive species, weeds 

Introduction 

Economic, environmental and social drivers are causing major changes for farming systems in Europe. 

On the one hand, products (e.g. food) delivered by farmers must fulfil increasingly greater quality criteria 

including health, safety and quality. On the other hand, economic constraints due to increasing demands 

by the market, community, or government, limit the financial benefits available to farmers (van der Ploeg, 

2020). One example is the Nitrates Directive (91/676/EEC) that demands that grassland farmers reduce 

nitrate leaching to groundwater by minimizing the application of fertilizer. 

Up to 40% of the global land surface area (Blair et al., 2014) is covered by grasslands, and about 20% 

of the global soil organic carbon is stored in grassland soils (Conant, 2010). Almost 35% of the utilized 

agricultural land in the European Union is used for, or its use is related to, fodder production (i.e. 

permanent grassland, forage crops) (Huyghe et al., 2014). Not only is the spatial distribution of managed 

grassland areas in Europe highly variable, but also its environmental conditions and management 

strategies. In consequence, the variability and expectations of grassland quality are very diverse. 

Perspectives on grassland quality can be manifold and they depend strongly on the aims and anticipated 

use of the grassland biomass. For fodder production, the protein and fibre content are of high importance 

(Wijesingha et al., 2020b), but for grazed extensive grasslands the presence of species that are 

poisonous or that have morphological structures to deter grazing (e.g. thorns) can be additional quality 

criteria (Lam et al., 2020). From a nature conservation point of view, the species composition and 

diversity or seeding time of rare species can also be an important quality criterion of grasslands (Moeckel 

et al., 2016). Further, for bioenergy production the quality can be essential for the evaluation of grassland 

biomass (Joseph et al., 2018). 

Estimating grassland quality in the field is a challenging task and traditional field methods are often 

labour and cost intensive. Commonly, farmers take representative biomass samples and use chemical 

analysis or lab-based near infrared spectroscopy (NIRS) to retrieve correct information about the protein 

and fibre content. These measurements cannot, of course, be made at frequent time intervals within a 

growing period, nor in a spatially continuous way, thus limiting the validity of the results for entire field 

sites. Remote sensing offers tools and sensors which could allow grassland managers to receive 

information about grassland quality in a spatially continuous, repeatable and comprehensible way 

(Wachendorf et al., 2017). However, while lab spectrometry (i.e. NIRS), and proximal remote sensing 

has shown potential to reduce the effort of expensive chemical lab analysis (Biewer et al., 2009; 

Pullanagari et al., 2012), the application of such methods on large areas and the time efficiency are 

limited. Existing and future satellite missions (e.g. European Sentinel satellite missions, EnMap) as well 

as airborne remote sensing systems show great potential to overcome these limitations (Raab et al., 

2020; Wijesingha et al., 2020b). 
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This article focuses on the current state of remote sensing-based estimation of grassland quality 

parameters important for feeding farm animals. It is split into three sections. The first section deals with 

feeding quality (i.e. nitrogen and fibre concentration), the second section focuses on the estimation of 

biological nitrogen fixation by legumes, and the third section provides an overview of the identification 

of unwanted species (i.e. invasive and weed species) in grasslands. 

Feed quality 

The quality of fodder can be described in terms of its biomass composition and available nutrients in 

relation to animal dietary requirements. It comprises nitrogen (N) (often expressed as crude protein 

(CP)), fibre content (acid detergent fibre (ADF) and neutral detergent fibre (NDF)), lipids, vitamins, 

macro- and micro-elements, and energy (Waghorn and Clark, 2004). Deriving information about 

grassland quality from canopy reflectance information has a rather short history and ranges from small 

scale (i.e. point measurements) (Biewer et al., 2009) to large scale (i.e. areal measurements) 

(Wijesingha et al., 2020b) studies. While empirical canopy reflectance-based prediction models have 

been developed for individual parameters like N, CP, ADF and NDF (Wijesingha et al., 2020b; Biewer 

et al., 2009; Safari et al., 2016; Capolupo et al., 2015; Näsi et al., 2018; Oliveira et al., 2020, Geipel et 

al., 2021), the relationship between other quality parameters and canopy reflectance have been less 

well examined. Common to all empirical models is the low generalizability of the results. As the quality 

of grasslands is affected by many different factors including species composition, management, 

environment and climate, the canopy reflectance varies between different sites. Consequently, there is 

a need for more generalizable models covering grasslands from different environments and 

management strategies that can potentially be applied, or by through less effort be adapted to new 

grassland sites. To the authors’ knowledge, only one study has explored general empirical relationships 

between spectral reflectance pattern and nutritive values among different grassland sites (Wijesingha 

et al., 2020b). Using a hyperspectral full-frame camera mounted on an unmanned aerial vehicle (UAV), 

these authors collected spectral information (450-950 nm) at five different sites within Germany 

throughout a complete growing period. The management scheme of these sites ranged from intensively 

used grasslands with up to three cuts to extensively managed nature conservation grasslands. The data 

collection in each grassland site was conducted just before each cut. The two quality parameters of CP 

and ADF were predicted successfully using a machine learning approach and reached maximum 

accuracies of 89% for CP and 87% for ADF. The developed models were applied on all five sites to 

create information maps indicating the spatial distribution of the selected grassland quality parameters 

on a field level (Figure 1). This study did not only allow analysing the spatial variation of quality 

parameters at field scale but also temporal patterns and, thus, may serve for example to determine the 

effect of weather or climate changes on the nutritive value of grasslands. As an alternative to purely 

empirical approaches, the use of mechanistic modelling approaches, which are based on the radiative 

transfer theory, could enable relationships to be found between grassland quality parameters and 

spectral reflectance (Weiss et al., 2020). However, greater uncertainties and thus lower model 

accuracies are part of this approach. 

 

Figure 1. Prediction maps for crude protein (CP) (left) and acid detergent fibre (ADF) (right) for an 

intensively managed grassland site in Germany. The prediction model was created using hyperspectral 

data collected from five different sites with various management intensities. For more details, see 

Wijesingha et al. (2020b). 
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Moreover, existing the literature on remote sensing-based estimation of grassland quality show a strong 

geographic bias of the study sites towards the USA and South Africa (Astor et al., 2020), which further 

limits the explanatory power and generalizability of the suggested approaches and results under 

European conditions. 

Biological Nitrogen fixation 

Another important quality parameter is the amount of N-fixing species (i.e. legumes) in the grassland 

composition. Legumes play an important role in the N cycle at the farm level, particularly in organic 

agriculture where the use of fertilizers is limited to organic fertilizer. Legumes will also receive more 

attention in conventional agriculture, as the nitrogen emissions on all farms must not exceed maximum 

thresholds set according to European rules. These restrictions will make legume-grass swards an 

important element of a farm’s crop rotation cycle. Beside N acquisition, swards based on legume-grass 

mixtures provide additional positive effects on the subsequent cash crop, i.e. enhanced product quality 

and soil fertility as well as weed suppression. Besides the spatial complexity of legume-grass swards 

due to varying composition of species mixture, the N-fixing (NFix) ability also varies between years. To 

the authors’ knowledge, Grüner et al. (2021) is the only study so far that has attempted to predict NFix 

using UAV-based spectral reflectance and 3D-structure information from a terrestrial laser scanner 

(TLS) along a two-year growing period. The models achieved a high prediction accuracy of 14% for a 

model including both growing periods and two different grass-legume mixtures (i.e. clover-grass, 

lucerne-grass) (Grüner et al., 2021). The total accumulated predicted amount of NFix was overestimated 

in comparison to the reference values by about 14 and 10 kg ha-1 for the clover-grass and lucerne-grass 

mixture, respectively (Grüner et al., 2020). Although the results are promising, the generalizability as 

well as the interpretation of the models must be considered with care. 

Weeds and other unwanted species 

Unwanted weed species like broad-leaved dock (Rumex obtusifolius) are often highly competitive and 

can decrease grass yield (Foster, 1989) and reduce forage quality by the presence of constituents like 

oxalic acid (Hejduk and Doležal, 2011). Another problem arises from non-native species invading 

grasslands, for instance the large-leaved lupin (Lupinus polyphyllus) which not only massively change 

the species composition of grasslands (Hansen et al., 2020), but also reduce the grassland quality, as 

such species may be poisonous for grazing animals. Normally, these unwanted species are controlled 

by chemical or mechanical weeding. Nevertheless, these treatments lead to several problems: a) the 

identification of exact location of the species is often performed manually, thus being labour and cost 

intensive, and b) the monitoring of the success of these treatments is cumbersome for large areas. For 

identifying and monitoring the distribution of unwanted species in grasslands, remote sensing offers 

suitable tools. The recent development of UAV technology allows imagery to be collected at adequately 

high spatial resolutions to identify even small weed species successfully. The utilized sensor systems 

are usually simple RGB cameras (Lam et al., 2020), but also more sophisticated spectral and thermal 

sensors may be suitable (Wijesingha et al., 2020a). Lam et al. (2020) successfully proved that it is 

possible to identify R. obtusifolius in native grasslands using an RGB camera and open-source image 

analysis tools. The reported classification accuracies are comparable to those of a manual field-based 

identification, showing the potential of the suggested approach for saving time, labour, and costs. The 

combination of complementary sensor systems may also improve prediction models for grassland 

parameters. So far, there has been a strong focus on yield estimations. 

Nevertheless, sensor fusion has also shown very good results for the identification of invasive species; 

for instance, Wijesingha et al. (2020a) used a combination of RGB and thermal information to 

successfully identify L. polyphyllus at two extensive grassland sites. The authors report a very high 

correlation between automated and manual image analysis (i.e. traditional method) (Figure 2). 

Considering the decreasing costs for UAV-borne cameras, simultaneously collecting visual and thermal 

information, the presented examples show the great potential of UAV remote sensing for species 

mapping in grasslands. 
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Figure 2. Lupin coverage (black) map for a mountain hay meadow at the peak biomass (12 June 2019). 

Left: Lupin coverage was digitized manually (traditional method). Right: Lupin coverage was semi-

automatically digitized using an object-based image analysed and RGB as well as thermal information. 

Conclusions 

Remote sensing offers suitable tools and approaches for predicting and mapping various aspects of 

grassland quality. However, the prediction accuracy and the generalizability of the developed models 

needs to be further improved. The recent technological development of sensors and sensor carriers 

(e.g. UAVs) makes it more likely that even people without specialized knowledge will be able to collect 

the necessary data. The data processing and analysis, on the other side, still requires expert knowledge 

and substantial computing resources, making professional support inevitable. Nevertheless, with the 

expected increase in remote sensing service providers in the agricultural domain, the proposed remote 

sensing technology is likely to reach practical applicability soon. For successfully bridging the gap 

between scientific research and practical application a good exchange of knowledge and mutual 

acceptance is needed. 
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Abstract 

Due to its high protein content, good digestibility and its ability to fix atmospheric nitrogen, red clover 

(Trifolium pratense L.) is an important forage crop in temperate livestock production systems. Increased 

yield and improved adaptation of red clover would increase Europe’s self-sufficiency in high quality 

fodder protein. The aim of this study was to assess growth dynamics and their relation to yield and 

flowering time in a set of 395 European red clover accessions using a high throughput field phenotyping 

approach. Terrestrial laser scanning implemented on the ETH field phenotyping platform (FIP) was used 

to track canopy height increase in high temporal resolution. Canopy height was highly heritable before 

the second cut (H2= 0.93) and was predictive for biomass yield with an accuracy of R2= 0.88. However, 

heritability of canopy height and predictability of biomass decreased in later cuts. Regressing short term 

growth rates against ambient temperature revealed a highly heritable (H2= 0.89) genotype-specific 

growth response to temperature. Genotypes with a higher temperature response showed increased 

yield and earlier flowering. We conclude that high throughput canopy height measurements, i.e. using 

terrestrial laser scanning, can be applied to estimate biomass yield as well as growth response to 

temperature in red clover. 

Keywords: LiDAR, canopy height, biomass, temperature 

Introduction 

Beef and dairy production in Europe relies heavily on imported soybean meal as a protein source in the 

diet. This is associated with negative environmental impacts and competition for the use of arable land 

between human food and animal feed production. Due to their high nutritive value and symbiotic fixation 

of atmospheric N, increased use of legume-grass swards offers a more sustainable feed source and 

reduce Europe’s protein dependency (Lüscher et al., 2014). With its high yield potential, protein content 

and nutritional value, red clover (Trifolium pratense L.) is among the most important forage legumes in 

temperate climates (Boller et al., 2010). In perennial mixtures, it is an important component facilitating 

good establishment and early yield (Suter et al., 2014). Forage yield and persistence are among the 

main breeding objectives in red clover (Boller et al., 2010). High throughput field phenotyping facilitates 

the assessment of large numbers of genotypes in high temporal resolution and thus enables the 

quantification of genotype by environment interactions (Cendrero-Mateo et al., 2017). It was recently 

shown that remote estimation of canopy height can be used to predict biomass in clover species (Grüner 

et al., 2019; Roth and Streit, 2018) and that height development is related to phenology and temperature 

response in wheat (Kronenberg et al., 2021; 2017). The aim of this study was to assess height growth 

dynamics in a diverse set of European red clover accessions and investigate their relation to yield and 

flowering time. 

Materials and methods 

A three-year field experiment (2018-20) comprising 395 European red clover accessions was conducted 

in the ETH field phenotyping platform FIP (Kirchgessner et al., 2016). The experiment was sown in an 

augmented design using two-row microplots. In 2018, the trial was left undisturbed except for husbandry 

measures to enable good establishment of the crop. In 2019, the crop was cut four times. At cuts 2-4, 

biomass of a subset (n=111, 102, 102; respectively) of the plots was recorded. After the first cut, canopy 

height was measured 1-2 times weekly using terrestrial laser scanning (Friedli et al., 2016) implemented 

on the FIP (Kronenberg et al., 2017). From these data, growth rates were calculated and regressed 

against ambient temperature to extract a genotype specific, temperature mediated growth component 
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(slp[GR~T]; i.e. the slope of the linear regression) following Kronenberg et al. (2021). Flowering time 

was recorded in 2019 and 2020 for each plot according to BBCH, as day of year when 50% of plants 

were in bloom (Lancashire et al., 1991). Persistence was evaluated before the third and fourth cut in 

2019 and again after winter in 2020 as percentage of red clover in each plot. For the statistical correction 

for spatial effects, extraction of adjusted genotype means and calculation of heritability (H2), a linear 

model framework including p-splines was used (for details see Rodríguez-Álvarez et al., 2018). 

Results and discussion 

The diverse geographical background of the population became apparent in the evaluation of flowering 

time. In 2019, only 50% of the genotypes had reached flowering by the time of the first cut, which was 

unexpected. Thus, only flowering data of 2020 could be evaluated, since no height and yield evaluations 

were done then, and the first cut could thus be postponed. Flowering time in the population ranged from 

120 to 179 days after January 1st and had a heritability of 0.76. A total of 20 accessions did not reach 

flowering at all. 

A consistent increase in canopy height over time was observed for all three investigated growth cycles 

(Figure 1a). At the second and third cut, average canopy height reached 0.4 m and H2 was 0.93 and 

0.82, respectively (Figure 1b). In the last growth cycle, towards the end of the vegetation period, canopy 

height increase was much slower compared to the first two cycles and heritability of canopy height 

decreased towards 0.42 at the last cut. A log-linear model was used to estimate biomass based on the 

canopy height at harvest (Figure 1c). At the second cut, the model showed a high predictive accuracy 

(R2 = 0.88) which is in accordance with previous studies using similar approaches (Grüner et al., 2019; 

Roth and Streit, 2018). However, the model performance decreased drastically for the third and the 

fourth cuts. This, together with the decreasing heritability of height may be due to progressing 

suppression of red clover in the experiment, mainly by white clover. This is seen in persistence, which 

decreased from 78% (H2 = 0.66) to 59% (H2 = 0.65) and 48% (H2 = 0.66) from the first to the third rating. 

The temperature-related growth parameter slp[GR~T] was highly heritable (H2 = 0.89) and positively 

correlated with yield and persistence (Fig. 1d). All these traits were negatively correlated with flowering 

time. Stem length and early flowering have previously been associated with higher persistence in red 

clover (Ford and Barrett, 2011; Herrmann et al., 2008). Our results indicate that higher persistence, yield 

and earlier flowering are further associated with a genotype specific, temperature mediated growth. 

 

Figure 1: (a) Canopy height development after the first cut in 2019 showing the adjusted mean (dots) ± 

standard deviation (shaded area) of the 395 accessions and (b) heritability at the respective 

measurement timepoints. (c) Log-linear regression between dry matter yield (DM) and harvest height 

for cuts 2-4. (d) Pearson correlations including scatterplots and loess curves between flowering time, 

temperature response (slp[GR~T]), dry matter yield (only second cut) and persistence, as well as 

distributions of the respective traits. 
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Conclusions 

Here, we demonstrated that canopy height measurements may be used to estimate biomass yield in 

red clover. Furthermore, our data suggest that measurements in high temporal resolution enable the 

extraction of heritable environmental response traits such as temperature mediated growth. 
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Abstract 

Mixed ley farming largely dominates the agricultural landscape of northern Sweden and leys are the 

major source of feed for dairy cattle. Forage digestibility is the main criterion that determines the optimal 

harvest date. Developing a real time and accurate tool to estimate the digestibility would increase the 

efficiency of the whole dairy sector. We tested how a commercially available field spectrometer (Yara 

N-Sensor, Yara) could be used for such a purpose. Data were collected from experimental plots with 

various rates of nitrogen fertilization and timothy and red clover ratios across three field seasons (2017 

to 2019) and four sites in northern Sweden. Spectral data were acquired for each plot before harvesting. 

Collected samples were analysed for in-vitro true digestibility (IVTD) using ANKOM procedures. 

Different regression techniques were applied to link the spectral data with the laboratory results. The 

results indicate good performances for the different models for estimating IVTD (RMSE = 12.9 to 16.8 

g.kg-1 and R2 = 0.88 and 0.70 for support vector machines and partial least squares, respectively). These 

findings suggest there is a good potential for field spectrometers such as the Yara N-Sensor for real 

time monitoring of digestibility. 

Keywords: field spectrometry, in-vitro true digestibility, leys 

Introduction 

Forage crops, predominantly leys, contribute a large part of the ruminant feed requirements in Northern 

latitudes. As a consequence, the productivity and quality of leys affects the economic efficiency of meat 

and dairy production. Information on digestibility of the ley is important for farmers to decide on the best 

harvest window, as this may eventually increase the meat and milk production per animal. At present, 

the estimation of the digestibility is performed in the lab using either traditional wet chemistry analyses 

or near-infrared spectrometry. Lab analysis, though accurate and robust, is time-consuming, while 

farmers need almost-immediate information to schedule their harvest efficiently. Consequently, a tool 

that performs near-real time estimation of digestibility would help the farmer to plan his harvest and 

result in an improvement of the efficiency of production, from the field to the animal. In recent years, 

field spectrometers have become increasingly used both in research and industry. These sensors 

capture the information carried by vegetation-reflected light that can ultimately be used to evaluate traits 

of the vegetation. Recent solutions have been developed using field sensors to evaluate the vigour of 

crops (Zhang et al., 2014), their biomass production (Vescovo et al., 2012) or nitrogen uptake (Zhou et 

al., 2019). 

Among these, the Yara-N sensor (YNS) is an already a commercial tool and is mostly used to assess 

nitrogen needs of cereal crops. As a consequence, a YNS-based tool for adjusting fertilisation rates 

from sensor-estimated botanical composition could easily be implemented at an industrial level, as the 

sensor is already widely used by farmers in Nordic countries. 

Therefore, the main objective of this work is to develop mathematical models that would link the spectral 

information acquired with a YNS to a lab-determined digestibility, defined here as the in-vitro true 

digestibility (IVTD). A Partial Least Square Regression (PLSR) and a Support Vector Regression (SVR) 

model were adjusted and their respective performances to estimate the botanical composition were 

assessed using statistical indicators. 

Materials and methods 

A total of 337 samples were taken at Lännäs, Ås, Röbäcksdalen and Öjebyn (Northern Sweden) during 

the 2017 to 2019 field seasons on experimental plots and production fields with mixtures of grass 
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(timothy, Phleum pratense L.) and legume (red clover, Trifolium pratense L.). Sample spots included 

various nitrogen fertilisation rates and botanical compositions. For each sample spot, a circular sampling 

frame of 50 cm diameter was used to delineate the sample area. Canopy spectral measurements were 

performed close to solar noon on clear sky days, with a zenithal viewing angle of 45° using a YNS 

spectrometer (Yara International ASA, Oslo, Norway) before harvesting the sample. The sensor was 

held at a constant height of 0.86 m above the ground, while the sampling frame was placed on the 

ground, 0.55 m from the sensor so that the area measured by the sensor would approximately match 

with the sampling area. Acquired spectra contained 60 bands ranging from 400 to 1000 nm, with a 

spectral resolution of 10 nm and a field of view of 25°. The solar irradiance was measured simultaneously 

using an external sensor and used to convert the spectral raw measurements to reflectance. Samples 

were cut at 7 cm above the ground level and hand separated into grass and legume fractions. Sub-

samples were then oven-dried at 70 °C for 48 h until they reached a constant weight and analysed for 

In Vitro True Digestibility (IVTD) using ANKOM procedures described by Valentine et al., (2019) using 

the Daisy II 200/220 incubator (ANKOM Technology, Fairport, NY). Samples were incubated in F57 

ANKOM digestion bags for 48 h at 39°C. Two chemometric models were calibrated to estimate the 

botanical composition of the samples using the canopy spectral reflectance (CSR), namely a Partial 

Least Square Regression (PLSR) and a Support Vector Regression (SVR). All analyses were performed 

using R 4.0.2 (R Core Team, 2020), and SVR and PLSR models were built using the liquidsvm and pls 

packages, respectively. For both models, a leave-one-out cross validation was used, as no validation 

dataset was available for a regular calibration-validation procedure. A radial-basis kernel was used with 

SVR to account for the potential non-linear relationship between the botanical composition and the 

spectral data. Models were evaluated using the root mean squared error (RMSE) and the coefficient of 

determination (R2). 

Results and discussion 

Both PLSR and SVR models showed relatively good performances for estimating the IVTD. If 

considering the slope of regressions (Figure 1), PLSR tended to perform better than SVR, with slopes 

equal to 0.93 and 1.32, respectively. However, SVR tended to outperform PLSR both in terms of RMSE 

(12.9 and 16.8 g.kgDM
-1 for SVR and PLSR, respectively) and R2 (0.88 and 0.7 for SVR and PLSR, 

respectively). A trend of non-linearity can be observed between 800 and 850 g.kgDM
-1, for both models. 

The important regions of the light spectrum for estimating the nutritional quality of forages is located into 

the short wave infrared range (1400 – 2400 nm, Norris et al., 1976). Although the light information used 

was acquired between 400 and 1000 nm, we obtained reasonable accuracies for estimating IVTD. This 

can be due to the fact that IVTD is inversely related to the biomass, which can be estimated using the 

near-infrared light information. 

 

Figure 1. Spectrometer-predicted vs laboratory-measured in-vitro true digestibility for PLSR and SVR. 

The dashed lines indicate the linear regressions, the black lines indicate the 1:1 lines, and a represents 

slope. 



 
Grassland Science in Europe, Vol. 26 – Sensing – New Insights into Grassland Science and Practice 40 

 

Conclusions 

This work showed the potential of the Yara-N sensor for on-field estimations of the in-vitro true 

digestibility of leys. Support vector-based regressions tend to perform better than partial least square 

regressions. If confirmed, these results could be used develop a practical tool to help farmers to estimate 

the best harvest window. 

Acknowledgements 

This work was funded by Regional Jordbruksforskning för norra Sverige and Stiftelsen 

Lantbruksforskning (E-FAST project). The authors also thank the Swedish Infrastructure for Ecosystem 

Science (SITES) for support. 

References 

Norris, K.H., Barnes, R.F., Moore, J.E., Shenk, J.S., (1976). Predicting forage quality by Infrared Reflectance 

Spectroscopy. Journal of Animal Science, 43, 889–897. https://doi.org/10.2527/jas1976.434889x 

Valentine, M.E., Karayilanli, E., Cherney, J.H., Cherney, D.J., (2019). Comparison of in vitro long digestion methods 

and digestion rates for diverse forages. Crop Science, 59, 422–435. 

https://doi.org/10.2135/cropsci2018.03.0159 

Vescovo, L., Wohlfahrt, G., Balzarolo, M., Pilloni, S., Sottocornola, M., Rodeghiero, M., Gianelle, D., (2012). New 

spectral vegetation indices based on the near-infrared shoulder wavelengths for remote detection of 

grassland phytomass. International Journal of Remote Sensing, 33, 2178–2195. 

https://doi.org/10.1080/01431161.2011.607195 

Zhang, F., John, R., Zhou, G., Shao, C., Chen, J., (2014). Estimating Canopy characteristics of Inner Mongolia’s 

grasslands from field spectrometry. Remote Sensing, 6, 2239–2254. https://doi.org/10.3390/rs6032239 

Zhou, Z., Morel, J., Parsons, D., Kucheryavskiy, S.V., Gustavsson, A.-M., (2019). Estimation of yield and quality of 

legume and grass mixtures using partial least squares and support vector machine analysis of spectral data. 

Computers and Electronics in Agriculture, 162, 246–253. https://doi.org/10.1016/j.compag.2019.03.038 

  



 
Grassland Science in Europe, Vol. 26 – Sensing – New Insights into Grassland Science and Practice 41 

 

Evaluation of remote sensing vegetation indices to estimate forage yield 

and quality of different fertilized grassland 

Schaumberger A., Klingler A. and Schweiger M. 

Agricultural Research and Education Centre (AREC) Raumberg-Gumpenstein, 8952 Irdning-

Donnersbachtal, Austria 

Abstract 

As many studies show, spectral signatures provide detailed information on plant functional traits. Forage 

yield and quality are of great importance in grassland management. Therefore, we derived widely used 

vegetation indices from hyperspectral reflectance data and evaluated their potential for estimating yield 

and quality on grassland plots with different fertilization. The spectral reflectance measurements were 

carried out shortly before each of three harvests per year with a field spectrometer on a long-term 

experiment with 24 organic and mineral fertilization treatments with a four-fold repetition. Starting with a 

null model, the best predictors for dry matter yield (DM, kg ha-1) and crude protein content (CP, g kg-1) 

estimation were determined from selected vegetation, chlorophyll and water indices and a leaf area 

index using an exhaustive search algorithm on a training data set. The estimation of DM with an index 

combination on an independent test data set yielded R² = 0.76, the CP was estimated with R² = 0.69. 

Additionally, we compared the index-based results with neural net analyses using Sentinel-2 bands 

calculated with spectral response functions (S2-SRF) as predictors. With a variety of observations, we 

have shown that simple indices can differentiate forage yield and quality on grasslands evolved under 

different levels of nutritional supply. 

Keywords: spectral signatures, grassland yield, forage quality, Sentinel-2 

Introduction 

The great diversity of land use types and management intensities in grassland with very different plant 

communities is a big challenge for empirical and dynamic grassland models. As Reinermann et al. 

(2020) show in their overview, remote sensing with multi- and hyperspectral reflectance data offers a 

wide range of possibilities to get traits of plant stands, which represent the effects of site and 

management factors. Sensors on several platforms ranging from terrestrial systems like field 

spectrometers to UAVs and satellites are used for this purpose, supporting different spatial scales from 

field to global applications. 

In this study, the potential of remote sensing vegetation indices was analysed by combining and verifying 

them for yield and quality estimates of highly diverse grasslands. These models were compared with an 

approach using the S2-SRF transformed Sentinel-2 bands (Klingler et al., 2020) to show differences in 

using indices and original spectral information. Based on Sentinel-2 bands, models can be used in 

image-based applications on a large spatial scale. 

Materials and methods 

The evaluation of vegetation indices for estimating grassland yield and quality is based on hyperspectral 

data collected by the HandySpec Field VIS/NIR 1.7 (tec5) field spectrometer with a range from 400 to 

1690 nm. The spectral measurements were taken on a long-term field fertilization experiment, 

established in 1946 in Admont (Styria, Austria) three times a year, immediately before each cut between 

2015 and 2019. 

The field experiment consists of 96 plots and shows a wide variability of well-established plant stands 

that have developed very differently over more than 70 years due to 24 continuous fertilization 

treatments, each repeated four times. Besides an unfertilized treatment, the other plots are supplied 

with mineral (N, P, K) and organic fertilizers (solid and liquid manure) in different combinations and 

levels. 

From the obtained spectral signatures we calculated commonly used vegetation indices (NDVI, RVI, 

SAVI, EVI, RDVI, TVI, MTVI1 MTVI2, CARI, LCI, GI, PRI, REIP1, REIP2, LWVI1, LWVI2, NDNI, TGI 

(definitions see at indexdatabase.de)) and the Leaf Area Index (LAI). As described by Klingler et al. 

https://www.indexdatabase.de/
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(2020), we converted hyperspectral data into the corresponding Sentinel-2 bands using the S2-SRF 

(ESA, 2018) and we applied algorithms proposed by Baret et al. (2010) in combination with radiative 

transfer models for LAI calculation. We selected the indices with the highest prediction power for DM 

and CP using an exhaustive search algorithm on a training data set in R. Furthermore, we compared 

linear models (LM) based on the selected indices with an Averaged Neural Network (ANN) from the R 

package caret (Kuhn, 2008) were the S2-SRF bands B2, B3, B4, B5, B6, B7, B8, B8a, B11, and B12 

were used as predictors. We split the data for both models in two different ways: i) a random split into 

2/3 for training and 1/3 for the test, and ii) a split by years with 2015, 2016 and 2017 as a training set 

and 2018 and 2019 as a test set for the DM model and 2015 and 2016 as a training set and 2017 as a 

test set for the CP model (CP analyses were only available for three years). We optimized the model 

parameters using the R function "trainControl" for the training data set and evaluated the models by 

calculating R² and RMSE on the independent test data set. 

Results and discussion 

Among the calculated indices and all their combinations, the Leaf Water Vegetation Index 2 (LWVI2) 

(Galvão et al., 2005), a variant of the Normalised Difference Water Index (NDWI) in combination with 

the Normalised Difference Nitrogen Index (NDNI) (Serrano et al., 2002) provided the best estimation 

results for grassland yield. The best correlation between modelled and observed CP as a quality 

parameter was given in the combination of LWVI2 and LAI. Both results are shown in Figure 1. 

 

Figure 1. Estimation of DM and CP by a linear model using a random test dataset with LWVI2 & NDNI 

for DM and LWVI2 & LAI for CP. 

The results of the ANN model with S2-SRF data are shown in Table 1 and can be compared there with 

the index-based results. The R² as well as the RMSE of both modelling approaches, are in a comparable 

range. 

Table 1. Comparison of R² and RMSE results for randomly and yearly split test datasets, from a linear 

model (LM) with combination of two different indices and an Averaged Neural Network (ANN) using S2-

SRF bands. 

 Random split Split by years 

 LM (2 Indices) ANN (S2-SRF) LM (2 Indices) ANN (S2-SRF) 

 n R² RMSE R² RMSE R² RMSE R² RMSE 

Dry Matter kg ha-1 1438 0.76* 552* 0.79 511 0.65 598 0.60 645 

Crude Protein g kg-1 360 0.69* 12* 0.74 10 0.71 13 0.72 11 

* Results are plotted in Figure 1 
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By combining two indices, we are already using those parts of the electromagnetic spectrum that 

contribute most to the estimate. Therefore, extending the model to include all S2-SRF bands does not 

add much value. However, the direct use of Sentinel-2 bands supports a large-scale application. 

To verify the model results, a data split is used in two ways. While a random split does not distinguish 

between replicates or survey years, a split by years applies the test to independent data from an entire 

year. This demonstrates the prediction power of each model for all three growths of an independent 

year. 

Conclusions 

The combination of remote sensing vegetation indices supports considerable estimates of yield and 

forage quality. We found that directly used multispectral data in neural networks achieve similar 

prediction accuracy as indices. For further development of the models, other predictors should be added, 

and the ground truth database needs to be extended to other sites and climate regions. 
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Information on yield proportion of grasses slightly improves the estimate 

of dry matter yield based on LAI 
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Abstract 

Grassland yield estimates from remote sensing often rely on Leaf Area Index (LAI) or LAI-derived 

variables. We hypothesize that LAI may saturate at high yield levels resulting in inaccurate estimates 

due to plant parts contributing more to yield than to LAI, such as the stems. In a multi-site field 

experiment studying the effects of organic fertilization on the vegetation of moderately species-rich 

mountain permanent meadows, we measured dry matter yield, Leaf Area Index (with the sensor 

AccuPAR LP-80) and the yield proportion of grasses, legumes and forbs at the time of the first cut over 

three growing seasons. We evaluated the effect of the yield proportion of grasses, which were expected 

to provide the most relevant contribution of non-leafy plant material, on the accuracy of predicting dry 

matter yield by means of a linear mixed models accounting for LAI and design factors (site, year and 

site x year). Including the yield proportion of grasses into the statistical model allowed to slightly improve 

the accuracy of the prediction from 0.615 to 0.635 R². 

Keywords: permanent meadows, LAI, grassland yield, botanical composition 

Introduction 

Leaf Area Index (LAI) and other indices derived from it are important tools for assessing grassland 

growth and monitoring the variation of its productivity by means of remote sensing data (Roumiguié et 

al., 2015; Klingler et al., 2020a). As the dry matter (DM) accumulation during the first growth cycle is 

boosted by the generative development (especially of grasses) starting with stem elongation and by a 

shift of the leaf-to-stem ratio towards an increased proportion of stems, we hypothesized that LAI may 

progressively underestimate forage yield at later developmental stages of permanent meadows because 

of the increasing proportion of non-leafy plant material contributing more to the yield than to LAI. To this 

aim, we evaluated the effect of the yield proportion of grasses on a LAI-based estimate of forage DM 

yield, as grasses are expected to provide the most relevant contribution of non-leafy plant material. 

Materials and methods 

The data were collected just before the first cut in 2018, 2019 and 2020 at a multi-site grassland 

experiment in the mountain area of South Tyrol (NE Italy), investigating the effect of organic fertilization 

on the botanical composition and forage production of moderately species-rich mountain permanent 

meadows. The measurements were performed at six sites covering a wide range of topographic features 

and harvest dates (Table 1). Each site included 9 plots of 5 x 5 m. Three of them were control plots and 

the other six were subjected to fertilization treatments, being combinations of different cattle manure 

type (slurry/farmyard manure/farmyard manure + liquid manure) and different fertilization levels 

(equivalent of a total N-input of 55.5/110 kg ha-1). Harvesting occurred in accordance with the mowing 

dates adopted by the farmers for their own grassland surrounding the experimental fields. LAI was 

indirectly estimated from simultaneous measurements of the photosynthetically active radiation below 

and above canopy performed by means of the linear sensor AccuPAR LP-80 (Decagon Devices Inc., 

Pullmann, USA). Measurements were made inserting the sensor bar parallel to the ground at eight 

randomly chosen spots within each plot (two from each side). The above canopy sensor was aligned 

according to the slope inclination of each plot. The leaf area distribution parameter was kept equal for 

all communities. Afterwards, the yield proportion of grasses, legumes and forbs was measured by the 

point quadrat method (Peratoner and Pötsch, 2019) in three of nine plots per site by lowering a metal 

rod at 80 points per plot spaced 10 cm apart (20 along each plot side, 25 cm from the plot margin) and 

recording every plant contact. The yield proportion was computed as the percentage of contacts of each 

functional group with respect to the sum of all contacts. We made use of a wooden frame, the inclination 

of which was continuously adjusted to ensure the verticality of the measuring metal rods even on steep 

slopes. In the remaining plots, the yield proportion was visually estimated using the measured values 
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as a reference. Then, four forage samples were obtained in each plot within a 50 x 50 cm metal frame 

placed randomly along a diagonal by means of electric scissors at a stubble height of about 5 cm. The 

forage samples were then oven-dried at 60°C until weight constancy and weighed. For each sampling 

event, measurements within each plot were averaged prior to further statistical analysis, treating the plot 

as experimental unit. Data analysis was performed by multiple regression by means of mixed models. 

LAI and the yield proportion of grasses were treated as covariates and modelled by means of polynomial 

regression, whilst the design factors site, year and site x year were treated as random terms. 

Additionally, the plots were considered as subject of repeated measurements over years. The model 

accuracy was expressed as the squared correlation between observed and predicted values obtained 

with a five-fold cross-validation (Hawkins et al., 2003) and was used for the stepwise forward model 

selection. 

Table 1. Location and site characteristics of the experimental fields. 

Coordinates (N, E) 
46°42’33'', 
11°55'3'' 

46°42’34'', 
11°55'5'' 

46°44'47'', 
12°13'20'' 

46°45'7'', 
12°12'28'' 

46°35'6'', 
11°55'37'' 

46°35'8'', 
11°55'36'' 

Altitude (m a.s.l.) 1120 1110 1540 1710 1675 1695 

Aspect WNW WNW SSE S S SSW 

Slope (°) 6 17 18 10 13 24 

Cut frequency (cuts yr-1) 3 2 3 2 3 2 

Harvest date of first cut (range) 
31.05-
07.06 

27.06-
07.07 

08.06-
21.06 

26.06-
07.07 

12.06-
22.06 

11.07-
18.07 

Plant species richness at trial 
start 

26.8 44.6 26.7 36.6 31.2 35.9 

Results and discussion 

The DM yield of the first growth cycle ranged between 0.62 and 6.42 t ha-1 (mean 2.77 t ha-1), LAI ranged 

between 2.18 and 6.39 (mean 4.16) and the yield proportion of grasses ranged between 22.60 and 

76.26% (mean 47.25%). The model accounting for LAI alone (P < 0.001) resulted in an R² of 0.615 and 

a RMSE of 0.64 (Figure 1a). The inclusion of the yield proportion of grasses into the previous model 

(both LAI and yield proportion of grasses with P < 0.001) resulted in a slight improvement of both R² 

(0.635) and RMSE (0.63) (Figure 1b) and shows that the expected yield increases both with LAI and 

grasses yield proportion. However, overestimation of low yields and underestimation of high yields were 

observed for both investigated models. 

 

Figure 1. Observed vs. predicted DM yield based on a) LAI alone, on b) LAI and yield proportion of 

grasses and c) predicted yield values based on LAI and yield proportion of grasses. The dashed line is 

the 1:1 identity line, b is the regression slope. 

The relationship of LAI and grass yield proportion with DM yield was best described by first degree 

polynomials; no significant interaction between LAI and grass yield proportion was detected. The 

relatively low R² values obtained are likely to be explained by the fact that most of the data were collected 

at a time relatively near to biomass peak. It must be also pointed out that the random design effects 

accounted for a large proportion of the total variation of the random part of the model (80.5% and 67.9% 
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for the baseline and the final model respectively). Indeed, LAI alone has been found elsewhere to be a 

poorer predictor of forage DM yield than compressed sward height measured by rising plate meter, but 

also to be able to effectively complement compressed sward height in estimating forage yield (Klingler 

et al., 2020b). However, the underestimation of yield based on LAI may be even more pronounced for 

AccuPAR LP-80 than for other sensors, as its LAI estimates were shown to saturate slightly earlier at 

high LAI measured values (Klingler et al., 2020a). 

Conclusions 

The results suggest that LAI measurements in the proximity of biomass peak of the first growth cycle of 

permanent meadows may result in an underestimation of forage yield at high yield levels and that this 

is partly caused by the proportion of grasses causing a shift of the leaf-to-stem ratio towards an 

increased proportion of stems. However, the accuracy improvement achieved by accounting for the yield 

proportion of grasses is very small. 
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Abstract 

We explored the capability of Sentinel-2 spectral configuration to assess crude protein (CP), neutral 

detergent fibre (NDF), acid detergent fibre (ADF) and enzyme digestibility of organic matter (EDOM) in 

open woodlands grasslands. Canopy reflectance measured with an ASD FieldSpec Spectroradiometer 

resampled to the configuration of Sentinel-2 MSI bands was used to calibrate models by Partial Least 

Squares Regression (PLSR). Models were tested over real Sentinel-2 data. The potential of 

hyperspectral configuration to assess forage quality was also investigated using PLSR and waveband 

selection procedure. Sentinel-2 based PLSR models showed a moderate predictive ability to assess CP 

with R2=0.54 and Ratio of Prediction to Deviation (RPD) =1.55 while poor results (R2<0.50 and 

RPD<1.50) were obtained for NDF, ADF and EDOM. 10 nm-resolution hyperspectral configuration 

allowed quantitative results of CP predictions. 

Keywords: crude protein, PLSR, band selection, field spectroscopy 

Introduction 

Remote sensing of grassland quality in open woodlands on farms might help to adjust stocking rates, 

and to organise grazing and feed supply at farm level (Ramoelo et al., 2018; Starks et al., 2006). 

Sentinel-2 configuration has shown potential to estimate forage quality. Raab et al. (2020) obtained R2 

values of 0.72 using Sentinel-2 data to predict crude protein. The use of field spectroscopy data to 

assess the potential of Sentinel-2 configuration to predict forage quality has been investigated and 

shows promising results (Lugassi et al., 2019; Ramoelo et al., 2015). The application of remote sensing 

to assess forage quality in highly diverse Mediterranean permanent grasslands of open woodlands has 

not received much attention. We investigated the potential of Sentinel-2 data to assess crude protein 

(CP), neutral detergent fibre (NDF), acid detergent fibre (ADF) and enzyme digestibility of organic matter 

(EDOM) by using a combination of simulated Sentinel-2 data from field spectroscopy and true Sentinel-

2 imagery using Partial Least Squares Regression (PLSR). We also explored the potential of 10nm-

resolution hyperspectral data to predict forage quality using PLSR and waveband selection from field 

spectroscopy data. 

Materials and methods 

Two sampling campaigns were performed, during the growing seasons of 2012-13 and 2018-19, in open 

woodland farms located in the north of Andalusia (Spain). Pasture herbage within 0.40 x 0.40 m 

sampling quadrats was cut to ground level and then oven-dried for 48 h at 60ºC and ground for 

subsequent chemical analysis. In total 173 samples were collected, 125 from 2012-13 and 48 from 

2018-19. Before cutting the pasture herbage in the sampling quadrats, canopy reflectance was recorded 

using an ASD FieldSpec FR Spectroradiometer (ASD Inc, Boulder, Colorado, USA) of 350-2,500 nm 

spectral range and 1 nm interpolated spectral resolution. Reflectance was recorded within the sampling 

quadrats before clipping the herbage, holding the fibre optic probe mounted on a pistol grip at 1.20 m 

height, resulting in a 0.22 m2 recording area. The wavebands affected by atmospheric (1370-1410 nm 

and 1816-1941 nm) or instrumental noises (350-395 nm and 2300-2500 nm) were removed. The 

spectroradiometer data were then resampled to Sentinel-2 MSI channels (those having 10 and 20 m 

spatial resolution) and to 10 nm hyperspectral bands for their respective analyses. For the sampling 

campaign of 2018-19, 25 tree-free 20 x 20 m Sentinel-2 pixels were identified, and within the 10 x10 m 
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pixel most distant from the closest tree located in the ground, four sampling quadrats (0.4 x 0.4 m) were 

set. The four samples were averaged to obtain a representative value of each pixel. These 10 x10m 

plots were sampled three times (December, February, May). Eventually, 75 samples were obtained for 

use as the test set for validation. Cloud-free bottom of the atmosphere Level-2A reflectance from 10 and 

20 m resolution pixels was extracted at the sample locations using Google Earth Engine. 

PLSR models were calibrated on the Sentinel-2 data derived from the ASD field data using leave-one-

out cross validation (LOO) and then evaluated with the Sentinel-2 reflectance data downloaded from 

Google Earth Engine. For the Sentinel-2 models, pasture quality variables were log10 (CP, EDOM) or 

squared transformed (NDF, ADF). For the hyperspectral data, a waveband selection procedure was 

implemented (Kawamura et al. 2008). Starting from 168 bands at 10 nm, the waveband selection was 

performed by stepwise removal of the band with the lowest regression coefficient produced by the PLSR. 

The LOO was repeated at each step. R2, Root Mean Squared Error (RMSE) and Ratio of Percent 

Deviation (RPD) were reported for each model. The RMSE of the Sentinel-2 models was back-

transformed to facilitate the interpretation. 

Results and discussion 

LOO of the Sentinel-2 model using the Sentinel 2 bands resampled from field spectroscopy produced 

Rcv2= 0.60 for CP, Rcv2=0.46 for NDF, Rcv2=0.45 for ADF and Rcv2=0.49 for EDOM. According to 

Viscarra et al. (2006) values of RPD between 1.4 and 1.8 indicate moderate predictive ability, which 

could allow qualitative assessments, while values over 1.8 indicate that quantitative assessments are 

possible. According to the test results of the Sentinel-2 models (Table 1), just qualitative assessments 

of CP would be possible. The rest of the variables showed poor predictive ability. 

Table 1. Summary statistic of test results of predictions made with models fitted with ASD field data 

(173) to predict over Sentinel-2 imagery (75). 

Variable n Mean nLV R2 test RMSE test RPD test 

CP % 75 13.4 (20.7) 3 0.54 3.32 1.55 

NDF % 75 45.4 (37.9) 3 0.46 6.58 1.38 

ADF % 75 30.1 (22.2) 3 0.28 4.55 1.26 

EDOM % 75 62.8 (37.9) 3 0.33 6.33 1.25 

nLV- number of latent variables. Values in brackets represent the range of the variables. 

The model calibrated with hyperspectral data resampled at 10 nm resolution showed promising results 

for CP (Table 2) which indicate good prediction ability and the possibility of quantitative assessments. 

Worse results were obtained for the rest of the variables for which only qualitative assessment might be 

possible in the case of NDF and EDOM. 

Table 2. Summary statistic of LOO cross validation from models fitted with 10 nm resolution 

hyperspectral data using all bands (n=168) and with selected bands for each variable. 

 All bands (n=168) Selected bands 

Variable N Mean nLV R2 cv RMSE cv RPDcv nLV R2 cv RMSE cv RPDcv NB 

CP % 173 12.2 (24.0) 11 0.79 2.48 2.17 12 0.83 2.19 2.46 19 

NDF % 173 51.2 (46.5) 11 0.60 6.35 1.59 6 0.66 5.89 1.71 36 

ADF % 173 31.3 (29.1) 3 0.40 4.74 1.30 6 0.46 4.49 1.37 7 

EDOM % 173 59.0 (47.8) 9 0.53 7.35 1.46 6 0.60 6.81 1.58 20 

nLV- number of latent variables; NB: number of selected bands. Values in brackets represent the range. 

The band selection procedure demonstrated that a high number of the hyperspectral bands are 

redundant (Kawamura et al., 2008). Similar and even better predictions can be obtained with fewer 

bands which could help to optimise the prediction of quality of grasslands using remote sensing. The 

main spectral regions selected were the red-edge (680-750 nm) and Near Infra-Red region (NIR) (800-

1300 nm). 
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These results provide further insights into the possibilities of predicting forage quality of Mediterranean 

permanent grasslands using Sentinel-2 multispectral data and hyperspectral data provided by future 

satellites such as the Copernicus Hyperspectral Imaging Mission for the Environment (CHIME) (Nieke 

and Rast, 2018). 

Conclusions 

Qualitative assessment of CP could be performed using Sentinel-2 images in permanent grasslands of 

open woodlands. Hyperspectral configuration might allow quantitative assessment of CP and qualitative 

of NDF with only 19 and 36 bands, respectively, from the red-edge and NIR regions mainly. Band 

selection showed that the number of bands used in hyperspectral data can be reduced maintaining or 

even improving the predictions.  
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Abstract 

Organic farmers relying on legumes as the external nitrogen source need fast measurement techniques 

to determine the amount of fixed nitrogen (NFix) to enable numerous management decisions. Unmanned 

aerial vehicles (UAVs) are tools for a non-destructive assessment of grassland traits. The aim of this 

field study was to provide NFix estimation models for two legume-grass mixtures through a whole 

vegetation period based on UAV multispectral information. Additionally, the annual NFix was calculated. 

The treatments consisted of two legume-grass mixtures: clover-grass (CG) and lucerne-grass (LG), and 

pure stands of legumes and grass of both mixtures. From the multispectral data the reflectance and 

texture information, together with 13 spectral indices were used for modelling. A prediction accuracy of 

82% was received when all vegetation and all spectral data were used. NFix was overestimated at all 

cuts with the annual NFix overestimated by 13.69 kg ha-1 for CG and by 9.96 kg ha-1 for LG. Annual NFix 

prediction by multispectral information should be considered as a first approach for the support of farm 

management decisions, which still needs further improvement. 

Keywords: texture analysis, grassland quality, nitrogen fixation 

Introduction 

Legume-grass mixtures are important components of crop rotation systems, especially on organically 

managed farms in the temperate climate zone of Europe. Nitrogen-fixing legumes are essential for 

reducing the amount of external fertilizer needed for the following cash crop. The amount of fixed 

nitrogen (NFix) represents an important input variable at farm level needed for sustainable management 

decisions. Traditional methods for NFix monitoring are based on destructive biomass sampling and are 

thus time and cost intensive. Non-destructive measurement techniques based on remote sensing can 

provide interesting approaches and improvements for field data acquisition of NFix (Grüner et al., 2019). 

Legume-grass mixtures can be botanically, structurally and phenologically very diverse, as they, in 

contrast to other agricultural row crops, comprise different grasses legumes, and other herbs. This 

heterogeneity within the mixture cannot be measured by pure reflectance information alone. Texture 

features, derived from high spatial resolution images, proved to serve additional structural information, 

correlating well with grassland heterogeneity and are sensitive to the phenological growth stage of 

plants. 

The aim of this study is to develop NFix estimation models from UAV multispectral imaging of legume-

grass mixtures with varying legume proportions (0-100%) and to evaluate the model prediction accuracy 

as a tool for the annual full season NFix amount. 

Materials and methods 

The data collection for this study was conducted in a field experiment in Neu-Eichenberg at an 

experimental farm of the Universität Kassel, in the year 2018. Field plots with a size of 1.50 m × 12 m 

were established and sown with a total seed rate of 35 kg ha−1. The experimental treatments consisted 

of two legume-grass mixtures, clover-grass (CG) and lucerne-grass (LG), and additionally pure stands 

of the legumes and grass of both mixtures. Further information about the specific species composition 

in given by Grüner et al. (2019). These six treatments were sown in four randomized replicates, resulting 

in 24 plots in total. Biomass samples were collected at three harvest dates (17 May 2018, 20 June 2018, 

and 3 August 2018). Harvest dates were selected according to usual farming practice. The N 

concentration in the biomass was assessed by an elemental microanalyzer (Elementar vario MAX CHN, 

Langenselbold, Germany) and N content in the aboveground biomass was determined by multiplication 

of N concentration and dry matter biomass. NFix was estimated by subtracting the N content from the 
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non-fixing pure stand of grass from the N content of the mixtures and the pure stand of legumes (i.e. 

difference method by Stülpnagel, 1982). 

UAV flight missions were conducted before each harvest in the morning at a nearly equal sun position. 

A quadrocopter (DJI Phantom 3 Advanced, Shenzhen, China) was used equipped with a multispectral 

sensor (Parrot Sequoia, MicaSense Inc, Seattle, USA). The sensor captured the reflected light in four 

separate bands: green (530-570 nm), red (640-680 nm), red edge (730-740 nm) and near-infrared (NIR; 

770-810 nm). Eight ground-control points (GCPs) were evenly distributed in the experimental layout and 

were georeferenced with a mean horizontal and vertical error of 0.02 m. Besides the average reflectance 

information of the four band, thirteen spectral vegetation indices and eight texture parameters for each 

spectral band (Haralick et al., 1973) were extracted for each plot and each harvest date. In total 49 

variables were used as independent variables for modelling NFix. The machine learning method partial 

least square regression was used for model calibration. In order to evaluate the additional values of 

texture features for the prediction, a model with and without texture features was calculated. A stratified 

cross-validation approach was applied, in which the whole dataset was repeatedly split into a calibration 

and validation dataset. To avoid bias by dividing the dataset, the cross-validation was run 100 times. All 

models were developed for both legume-grass mixtures combined (i.e. whole data) and for each mixture 

alone (i.e. clover-grass, lucerne-grass). To calculate the accumulated total NFix, the predicted and 

measured NFix values for all legume-grass mixture plots were averaged for each harvest date. Summing 

the values for each harvest up, delivers information about the total annually accumulated NFix. 

Results and discussion 

The modelling results for NFix showed no consistent improvement by the integration of texture features. 

For the whole dataset and the clover-grass dataset the relative prediction error was slightly lower for the 

model without texture information (19% and 24% respectively) than for the models with texture 

information (20% and 37% respectively) (Table 1). 

Table 1: Model summary for predicting NFix with and without texture features using a partial least square 

regression. The prediction error (rRMSEPVal) and the coefficient of variation (R²val) are based on 100 

times 10 fold-cross-validation. 

 Whole dataset Clover-grass Lucerne-grass 

Texture (T) n R2
val rRMSEPval n R2

val rRMSEPval n R2
val rRMSEPval 

Without (T) 48 0.72 18.9 24 0.69 24.5 24 0.81 22.3 

With (T) 48 0.70 19.6 24 0.49 36.9 24 0.83 20.9 

In contrast, for the lucerne-grass dataset the model including texture information performed slightly 

better than the model without texture information (21% and 22%) (Table 1). The best model for NFix was 

obtained for the whole dataset, which produced rather crop-unspecific models. However, our model 

validation strategy was limited due to the low number of samples and independent test dataset would 

be desirable for a more reliable assessment of prediction accuracy. Subsequently, our models were 

created based on datasets from one experimental site and one sampling year, which may limit the 

transfer of our modelling results to other locations and time periods. 

 

Figure 1. Accumulated total NFix amount for a) the clover-grass mixture and b) lucerne-grass mixture 

based on field data (black) and predicted values (grey). 
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For practical farming information about the total annually accumulated N, NFix is of relevance. The two 

legume-grass mixtures were of different biomass and NFix levels, but showed very similar patterns 

concerning the trend of observed and predicted values (Figure 1). NFix was overestimated at all cuts by 

13.69 kg ha-1 for CG and by 9.96 kg ha-1 for LG. 

This overestimation of NFix for both legume-grass mixtures might be caused by the overall low total 

annual NFix amount at our study site. This fact in combination with the small sampling size may have 

created difficulties in the modelling process. 

Conclusions 

Non-destructive and fast NFix prediction tools are desirable for practical farm management. We 

successfully developed a procedure for NFix prediction for lucerne-grass mixtures by including texture 

features from a grey level co-occurrence matrix. Although prediction of NFix seemed to be more complex 

than other traits like yield, strong relationships were found between NFix and multispectral information 

under field conditions. However, the relationships must be interpreted with caution, as different impacts 

of N flux in the soil, air and plant affect N fixation of forage legumes in mixtures with grasses. 

Acknowledgements 

The authors would like to thank Wolfgang Funke and Rüdiger Graß for the support in field data collection 

and crop management. 

References 

Grüner E., Astor T., Wachendorf M. (2019) Biomass prediction of heterogeneous temperate grasslands using an 

SfM approach based on UAV imaging. Agronomy 9 (2), S. 54. DOI: 10.3390/agronomy9020054. 

Haralick R., Shanmugam K., Dinstein I. (1973) Textural features for image classification. IEEE Transactions on 

Systems, Man and Cybernetics 3 (6), S. 610–621. 

Stülpnagel R. (1982) Schätzung der von Ackerbohnen symbiontisch fixierten Stickstoffmenge im Feldversuch mit 

der erweiterten Differenzmethode. Journal Agronomy and Crop Science 151, 446–458. 

  



 
Grassland Science in Europe, Vol. 26 – Sensing – New Insights into Grassland Science and Practice 53 

 

Monitoring rangeland biomass during wet and dry seasons from a video 

obtained with a simple digital camera 

Diedhiou A.1, Diatta O.2, Ndiaye O.2, Bossoukpe M.1, Ngom D.1, Julien L.3,4, Toure I.3,4, Diouf A. A.5, 

Bayet T.6, Cambier C.6, Faye E.7,8 and Taugourdeau S.3,4 

1Département Biologie Végétale, Faculté des Sciences et Techniques / UCAD, BP:5005 Dakar-Fann, 

Senegal; 2Centre de Recherches Zootechniques de Dahra/ Institut Sénégalais de Recherches Agricoles 

(ISRA), BP 3120, Dakar, Sénégal; 3CIRAD UMR SELMET,Montpellier, Senegal; 4UMR SELMET, Univ 

Montpellier, CIRAD, INRA Institut Agro, 34000 Montpellier, France; 5Centre de Suivi Ecologique, Rue 

Aimé Césaire x Léon Gontran Damas, BP 15532 Fann-Dakar, Senegal; 6Sorbonne Universite, UCAD, 

IRD, UMI UMMISCO, F-75006 Paris, France; 7UPR Hortsys, CIRAD-Univ Montpellier, Montpellier, 

34000, France; 8CIRAD, UPR Hortsys, Montpellier, 34000, France 

Abstract 

Photogrammetry is an image analysis that produces a 3D model of on object using a set of images 

taken from different positions. We tested this technique using a digital camera to produce a 3D model 

of 1m2 of Sahelian rangeland grass. In 2019 we made measurements on 3 squares of 1m2 (images 

capture and biomass measurement) in each of 10 days in the wet season and each month during the 

dry season. We analysed the images using PIX4D software. We extracted the volume and the colour 

indexes from the pix4D output. We used a random forest to predict the dry and fresh mass of the grass. 

The percentage of variance was 46.31% for the fresh mass and 40.46 % for the fresh mass. This tool 

could be used to monitor grass biomass during both wet and dry seasons and implemented in a grass 

observatory. 

Keywords: structure from motion, Sahel, PIX4D, 3D model 

Introduction 

Photogrammetry is a generic term that regroups all analyses where photography is used to make 

measurements. One of these analyses is called “Structure from motion.” (Frey et al., 2018). The concept 

of the analysis is that the structure (3D model) of an object is recreated from a set of images taken from 

different angles. The structure of motion is widely used on UAV images to create an orthomosaic and 

digital surface model of an ecosystem. Structure from motion can also be used from the ground with a 

digital camera. Previous work shows that 3D models obtained from digital cameras were linked with the 

mass of the herbaceous layer (Bossoukpe et al., 2020). This work was carried out only at the end of the 

growing season (end of the wet season). The goal of the study reported here was to test the utilization 

of this approach to monitor the biomass during both the growing season and the dry season. 

Materials and methods 

At the Dahra Research Station in northern Senegal, we made measurements on a natural rangeland in 

an enclosure during the wet season. The measurement started on 27 August 2019 (30 days after the 

first rain event of the 2019 wet season) and was made every 10th day until the end of the rainy season 

(here the 5 November). Measurements were made every month during the dry season to evaluate the 

quantity of straw material until 4 February 2020. For some videos the 3D model could not be made. 17 

models were available for the wet season and 18 models for the dry season. 

At each measurement, 3 squares of 1m x 1m of grass were sampled using a Camera Campark 20 with 

the camera in video mode. The video was taken horizontally at 1 m above the ground, oriented to the 

ground, taken along fives lines. We used video mode in preference to static images because it is easier 

to take one movie than taking 300 images of the squares. The video was in 1980*1080 resolution. We 

took between 350-400 images from this video. 

The grass was cut and weighed to obtain the fresh mass, and samples were dried and weighed to obtain 

the dry mass. The video was analysed using the PiX4D software. The outputs of the PiX4D software 

were an orthomosaic and digital surface model. The project was scale with the square and a height 
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reference. We extracted the colour from the orthomosaic and height from the DSM. From the three 

colours we calculated several indices (Table 1). 

Table 1. List of the Vegetation indices used (R: red, G: green and B: Blue). 

Acronym Formula 

NDGRI (R-G)/(R+G) 

NDBRI (B-R)/(B+R) 

NDBGI (B-G)/(B+G) 

Vari (G-R)/(G+R-B) 

Exg G-0.39*R-0.61*B 

GLI (2*G-R-B)/(2*G+R+B) 

These indices were combined with the maximum and mean height obtained from the DSM. We used a 

random forest algorithm (package randomForest for R software) to predict the fresh and dry mass. Due 

to the unbalanced data of the masses, we used a square transformation and afterwards we analysed 

the residuals of the random forest between the different dates. 

Results and discussion 

The random forest for the fresh mass explained 46.31% of its variability (44.41% for the dry mass). For 

both, the most important variable was the mean height obtained from the DSM; thus the NDGRI index 

(and the VARI indexes for fresh mass). This means that both colour and 3D variables can be used to 

evaluated the grass biomass. This results concord with work using UAV where both types of variable 

are important. 

 
Figure 1. Predicted biomass obtained for the random forest versus measured biomass for the fresh 

mass and the dry mass. The black dots are the data in the dry season and the grey for the wet season, 

with the median absolute error (MAE) in g and the relative median absolute error (MAER) in %. 
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The residuals were different between the different dates of measurement. The random forest 

underestimates the mass at the end of the season but overestimates the mass at the beginning of the 

season. The same random forest model cannot therefore be used during the whole year. More data will 

be required to be able to build models for different times during the year. 

Conclusions 

This work shows that some parts of the variability of the biomass of natural rangelands can be captured 

using a simple camera and the “structure of motion” process. This kind of process could be used to 

develop a participatory observatory of rangeland biomass growth based on a network of observers using 

cameras. 
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Abstract 

Grassland management – in particular the use intensity – determines its ecosystem services, like fodder 

production, carbon storage, freshwater generation and biodiversity. However, large-scale and spatially 

explicit information on grassland use intensity is often unknown. Here, an annual time series of high-

resolution optical satellite data (Sentinel-2) for the year 2019 was used to detect mowing events in 

southern Germany. The pre-processed satellite time series was interpolated, smoothed and filtered and 

the daily Enhanced Vegetation Index (EVI) was calculated. Afterwards, mowing events were detected 

by applying an algorithm, which locates strong minima within the EVI time series per pixel. The results 

were validated by comparing them to mowing events extracted from daily pictures of grassland parcels 

on field scale. The number and dates of mowing events showed good results as 79% of the observed 

harvests were successfully detected. Mowing events were missed when the dense time series was 

disrupted by cloud conditions as the EVI response after mowing events usually lasted not longer than 

14 days. Falsely detected mowing events were mostly related to grazing activities. 

Keywords: grassland, mowing, use intensity, Sentinel-2, remote sensing, vegetation index 

Introduction 

In Germany, grasslands are mainly agriculturally used for fodder production and are grazed and/or 

mown regularly. Furthermore, grasslands possess several ecosystem functions which play key roles 

concerning environmental impact and climate change, like carbon and nitrogen storage and cycling 

(Bengtsson et al., 2019). The timing and frequency of grassland mowing strongly influences these 

functions. However, regional information on the mowing regime and therefore on yields and ecosystem 

services is mostly missing. Satellite data can be exploited in this regard as they are globally and 

frequently available at high spatial and temporal resolution (Reinermann et al., 2020). In the past, optical 

satellite data have already showed promising results in detecting grassland management through time 

series analysis of the Normalized Difference Vegetation Index (NDVI) (Kolecka et al., 2018; Griffiths et 

al., 2020). 

Here, we use optical data (Sentinel-2) to detect the mowing regime at regional scale and at high 

resolution (10 m) in southern Germany. The investigated grassland is heterogeneously used (from zero 

to six mowing events) and the algorithm is validated with an independent observation dataset. 

Materials and methods 

In this study, Copernicus Mission Sentinel-2 data of the vegetation period (March to November) 2019 

were analysed. The data consist of three spectral bands (bands 2, 4 and 8 with central wavelengths of 

492.1 nm, 664.9 nm and 832.9 nm, respectively) at 10 m spatial resolution. The revisit time over 

southern Germany is 2 to 5 days. Data processing was conducted in Python (version 3.6). The 

Copernicus Grassland High Resolution Layer 2018 (EEA 2020) was used to extract the grassland areas 

in southern Germany. The Sentinel-2 time series was atmospherically corrected by applying the MAJA 

algorithm version 3.3 and clouds were masked out (Hagolle et al., 2017). Based on the pre-processed 

data the Enhanced Vegetation Index (EVI) was calculated, which is sensitive towards vegetation 

greenness, structure and photosynthetic activity. In addition, EVI showed stronger reaction to grassland 

canopy change and less saturation effects than NDVI within the analysed data. The EVI time series 

were filtered, gap-filled and smoothed for each pixel: As the EVI at times showed values outside of a 

range of -1 to 1, only positive EVI values which were smaller than 2 were kept, assuming that other 
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values would not represent vegetated area. Large gaps (> 10 days) were filled linearly and a cubic 

splines interpolation was conducted on the EVI time series to generate daily information. These time 

series were smoothed using a Savitzky-Golay filter to reduce small fluctuations. 

Following the developed mowing detection algorithm, local minima and maxima were detected for each 

pixel’s time series. To check if the local minima in fact represents a mowing event, the difference 

between the EVI at the local minimum and at the previous local maximum was compared to an empirical 

threshold. The threshold which led to the best results when compared to real mowing events, was an 

EVI equivalent of 0.07. In addition, it was checked if the local minimum is followed by a local maximum 

with a difference of at least 0.02 EVI to guarantee that it is not a small minimum on a downward trend. 

If the criteria were fulfilled, the mowing event date was placed between the local maximum and local 

minimum. 

In addition to the mowing events, the quality of the satellite information and the certainty of the mowing 

detection was assessed. Therefore, additional layers include the time interval and the gradient between 

local minima and maxima, and the data availability when a mowing event was detected. Furthermore, 

the number of valid scenes and the number and timing of large data gaps (more than 15 days) were 

investigated as additional quality information. 

The mowing event detection is validated with an independent dataset consisting of daily wildlife camera 

and webcam images in southern Bavaria. The validation dataset includes information on a 

heterogeneous set of grasslands (49 in total) distributed among the study area. These grasslands are 

mown one to six times per year (more parcels two to four times than one, five or six times), resulting in 

140 mowing events in total. This dataset was compared to the satellite-based event detection to 

calculate the accuracy of the algorithm. 

Results and discussion 

Due to the dense Sentinel-2 time series and the strong reaction of the EVI to changes in the grassland 

canopy, mowing events could be successfully detected where cloud-free images were available. Even 

though the approach is pixel-based, the shapes of single grassland parcels are clearly visible when 

examining the mowing frequency map (Figure 1). 

 

Figure 1. Grassland mowing frequency within the focus region in southern Germany. The images at the 

bottom are zooms. The country border information is from GADM (https://gadm.org/data.html). 
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In addition, the analysis of mowing events at this high resolution enables the perception of within parcel 

dynamics. The detected mowing frequency varies between zero and six events in 2019. Parcels with 

zero detected mowing events are probably grasslands, which are only grazed. The validation of the 

satellite-based mowing detection algorithm lead to good results (F1 score = 0.82; recall = 0.79; precision 

= 0.85). 79% of all mowing events of the validation dataset were correctly detected. The missed mowing 

events were almost always during cloudy conditions and therefore related to the unavailability of valid 

and dense data. The response within the EVI time series following a mowing event was only visible for 

about 15 days. 19 events were falsely detected as mowing events; these were mainly related to grazing 

activities on the parcels and were not biased towards a mowing frequency class. 

This study shows that analyses based on optical satellite data are restricted to cloud-free conditions. To 

counteract resulting gaps within optical data time series, cloud-penetrating SAR data could be exploited 

to complement the mowing events detection. 

Conclusions 

Grassland dynamics, such as the mowing regime, are clearly depictable from time series of vegetation 

indices based on optical sensors using a local minimum detection approach, given that cloud-free time 

series are available. Some grazing activities, but probably not all, were confused as mowing events by 

the algorithm. 
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Abstract 

Empirical models to estimate herbage mass and grass quality from multispectral imagery acquired by 

unmanned aerial vehicles (UAVs) often generalize poorly in relation to different types of grasslands. We 

therefore investigated whether the generalization performance can be improved by replacing the 

commonly used single-target regression algorithms by corresponding multi-target algorithm adaptations 

which can simultaneously predict herbage mass and grass quality (dry matter percentage, crude protein, 

and structural carbohydrates). By additionally considering the relationships between the target variables, 

these multi-target algorithm variants have the potential to yield better generalization performance. We 

found that for Partial Least Squares, K-Nearest Neighbours, and Random Forest, the multi-target 

variants tended to perform better than their single-target counterparts, while for Extremely Randomized 

Trees mostly the opposite was true. Given the usual lack of ground-truth data for the model to learn the 

underlying relationships, we suggest the use of multi-target regression be considered whenever several 

grass parameters are estimated. 

Keywords: grassland, UAV, spectral reflectance, multi-target regression 

Introduction 

Empirical models to estimate herbage mass and grass quality from multispectral imagery captured by 

unmanned aerial vehicles (UAVs) have great potential to support grazing and harvest scheduling. Such 

models have proved to perform particularly well when trained and applied on a single farm with 

grassland swards of one-to-few-plant species and low heterogeneity (e.g. Askari et al., 2019). However, 

generalization to different, potentially more heterogeneous grasslands is not always applicable (e.g. 

Hart et al., 2020). This poses a major challenge in model development for regions with spatiotemporally 

highly variable grasslands. In this study, we explored a new approach for developing herbage mass and 

grass quality models that, hypothetically, will improve the generalization performance. Instead of fitting 

separate models for herbage mass and different grass feed quality parameters, we integrated these 

questions using multi-target regression methods. These methods consider not only the relationships 

between the features (predictor variables), but also between the corresponding target variables, in our 

case herbage mass and grass quality parameters. Thus, it is presumed they describe better the 

underlying real world grassland situations and might better generalize as compared to corresponding 

single-target methods. To test this hypothesis, we conducted an in-silico experiment using a previously 

published dataset of UAV-acquired multispectral imagery and ground-truth data for herbage mass and 

several grass quality parameters, namely dry matter percentage and the concentrations of crude protein 

and structural carbohydrates (Hart et al. 2020). Employing a nested cross-validation (CV) strategy, we 

compare multi-target adaptations of Partial Least Squares, K-Nearest Neighbours, Random Forest, and 

Extremely Randomized Trees to their single-target variants. 

Materials and methods 

Dataset and feature extraction: We used the dataset from Hart et al. (2020) which includes UAV-

acquired multispectral data (green, red, red-edge, and near-infrared; ground sampling distance of ~5 

cm) and ground-truth data for dry weight of the herbage mass per area (HM) and for several grass 

quality parameters, namely for dry matter percentage (%DM per fresh weight) and for the per-dry-weight 

concentrations of crude protein (CP) and of the structural carbohydrate fractions acid detergent fibre 

(ADF) and neutral detergent fibre (NDF). The dataset covers a very large diversity of grasslands (n = 

152): 18 multi-species grasslands located on six commercial farms in Switzerland monitored at different 

phenological growth stages (2 to 6 weeks) and seasons (spring to autumn). 
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Python 3.8 was employed for all data analyses. The features included the 21 spectral indices listed in 

Askari et al. (2019) and the four single spectral bands. These were extracted per-pixel and subsequently 

averaged for the 2.2 m x 5 m ground-truth plots omitting a 0.2 m wide margin to prevent boundary 

effects. 

Algorithm comparison: We compared multi-target algorithm adaptations of Partial Least Squares (PLS), 

K-Nearest Neighbours (KNN), Random Forest (RF), and Extremely Randomized Trees (ExtraTrees) to 

their single-target variants. All algorithms were used as available in the Python package scikit-learn 

(v.0.23.2). In the multi-target case we used a single model to predict all five target variables (HM, %DM, 

CP, ADF, NDF). We employed a nested cross-validation (CV) strategy. The outer CV loop served 

exclusively the purpose of model validation while the inner CV loop is used for feature selection and 

hyperparameter tuning. The CV schemes were 5 times repeated 6-fold CV for the outer loop and 

(unrepeated) 5-fold CV for the inner loop. The performance and stability was determined as mean and 

standard deviation, respectively, of the coefficients of determination (R2) over the 5x6 folds of the outer 

loop. Bayesian correlated t-test through the two_on_single function of the python package baycomp 

(v.1.0.2) was used to calculate the probability that the average performance (R2) of the multi-target 

algorithm is higher than the performance of its single-target counterpart.  

Data scaling, feature selection, and hyperparameter (HP) tuning: Target variables and features were 

Yeo-Johnson-transformed, scaled, and centred with the PowerTransformer (scikit-learn). The 

corresponding parameters defining the transformation/scaling were obtained for every cycle of the outer 

CV loop using only the training data. The R2 was used as score for model selection (feature selection 

and HP tuning). For multi-target models the mean over the individual scores of the targets was used. 

Features were selected from the 4 spectral bands and the 21 spectral indices. For PLS and KNN, the 

feature selection procedure was combined with HP tuning as follows: for all combinations of HP values, 

a Sequential Forward Selection (SFS) based on cross-validation (inner CV loop) was conducted with 

the SequentialFeatureSelector from the Python package mlxtend (v.0.17.3). The tuned HPs with 

corresponding search ranges were n_components ∈ [1..31]) for PLS, and n_neighbors ∈ [2..10], weights 

∈ {‘uniform’, ‘distance’}, and p ∈ [1..4] for KNN. Additionally, for both PLS and KNN the number of 

features to select in SFS was tuned (k_features ∈ [n_components..25]). For RF and ExtraTrees, the 

feature selection and HP tuning was conducted in a computationally less demanding fashion, namely 

using GridsearchCV (scikit-learn) wrapped around Recursive Feature Elimination with RFE (step = 0.5; 

scikit-learn). For both RF and ExtraTrees, the HPs and search ranges were max_features ∈ (0.1, 0.2, 

…, 1), min_samples_leaf ∈ [1..10], and max_samples ∈ (0.2, 0.4, …, 1). Furthermore, n_estimators was 

set to 200 and for RF we tuned the HP bootstrap ∈ {True, False}. 

Results and discussion 

Independent of the algorithm used, the generalization performance was poor (Figure 1; R2 < 0.4 with 

few exceptions). Consistent across all models, %DM was the parameter that was best predicted (R2 of 

0.30–0.47). RF and ExtraTrees outperformed the simpler KNN and PLS. As indicated by the high 

standard deviation in R2, the stability in generalization performance was very poor. Due to the low 

number and bandwidth of spectral bands, we suspect a lack of sensitivity to the plant properties. The 

instability in generalization performance furthermore suggests a limitation by the dataset being small 

considering the large diversity of grasslands it contains. Because of insufficient representation of this 

diversity in the dataset, the model presumably cannot adequately learn the relationships and thus is 

sensitive to the train-test split of the data. Particularly in this situation, using multi-target regression is a 

promising endeavour, as we can additionally exploit information that is already available without the 

need to collect more samples. However, in our experiment the multi-target models did not consistently 

outperform their single-target counterparts. For PLS, KNN, and RF, Bayesian correlated t-test indicated 

that the average generalization performance is more probable to be improved rather than diminished 

when using multi-target regression (with exception of %DM for RF). However, high probabilities (> 80%) 

for this improvement were only observed for the largest shifts in mean R2 (0.05–0.1) corresponding to 

CP, ADF, and NDF when employing RF. Contrarily, for ExtraTrees the multi-target model performed 

worse in prediction of all targets but ADF, particularly pronounced for %DM where the mean R2 dropped 

by 0.06. 
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Figure 1. Mean cross-validation R2 with standard deviation in parenthesis. The colours show the 

probability that the mean performance of the multi-target model exceeds the one of the single-target 

counterpart (Bayesian correlated t-test). Please note: the probability of the multi-target model’s mean 

performance being worse is the complementary probability. 

Conclusions 

The generalization performance of multispectral herbage mass and grass quality models improved in 

some, but not in all, cases when switching to multi-target algorithms. We suggest to investigate traits 

such as leaf area index or grass height as potentially beneficial co-targets and under which 

circumstances informative relationships between targets might weaken, e.g., at the end of the vegetative 

phase when herbage mass plateaued but grass quality declines. 
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Abstract 

Grasslands in their various forms of appearance characterize the pre-Alpine landscape. Despite the 

economic value and significant role of plants in grassland carbon and nitrogen cycling, spatially explicit 

information on grassland biomass are rarely available. This study aims to develop routines to monitor 

grassland traits at different spatial scales. Field sampling campaigns were conducted in April 2018 and 

at multiple times during the growing seasons of 2019 and 2020 to collect in-situ data of aboveground 

dry matter biomass (DM) from differently managed grasslands. The campaigns were partially 

accompanied by unmanned aircraft system (UAS) flights to acquire very high resolution multispectral 

imagery at the field-scale. These data were complemented by time series of Sentinel-2 (S2) imagery to 

address the regional scale. In a first step, we tested different statistical modelling approaches and UAS 

input datasets to estimate DM for the single-date acquisition in 2018. Promising results were obtained 

by the machine learning algorithms random forest and gradient boosting machines (cross-validated R2 

of best model = 0.71). A first multi-temporal DM model for S2 imagery was developed and used to create 

regional maps. In the next phase we will adapt the algorithms to multi-temporal UAS data and compare 

the results across different scales. 

Keywords: biomass, temperate grasslands, machine learning, UAS, satellite 

Introduction 

Knowledge about available biomass and fodder quality is critical for grassland and livestock 

management. However, regularly updated spatially explicit information on grassland biomass and 

quality is rarely available. Remote sensing data offer the possibility to close this gap. Recent studies 

showed the potential to use UAS (e.g., Grüner et al., 2020; Wijesingha et al., 2020) and satellite data 

(e.g. Schwieder et al., 2020) for applications in temperate grasslands. The objective of our study was to 

develop and apply remote sensing-based models to estimate DM in pre-Alpine multi-species grasslands 

at the field and regional scale. 

Materials and methods 

The wider Ammer catchment in southern Bavaria, Germany was selected as the study area. In-situ field 

and multispectral UAS data (4 bands; Parrot Sequoia [SEQ], Parrot Drones SAS, France) were acquired 

at selected sites and completed by Sentinel-2 (S2) imagery. A first pilot study with field sampling (10 

plots of 30 m x 30 m, sampled at 12 subplots of 0.25 m x 0.25 m) and UAS flights was conducted in 

April 2018 (Schucknecht et al., 2020). Based on the experience from this study, the sampling design for 

the subsequent multi-temporal study was adapted. In 2019-2020 we sampled 11 plots (20 m x 20 m, 

each with 4 subplots of 0.5 m x 0.5 m) on differently managed grasslands at several times during the 

growing season to acquire information about bulk canopy height (CH, measured with a plate meter) and 

DM. The plots were sampled at different development stages at 2-8 dates per year (depending on 

logistical constraints). For the regional modelling, the subplot data of 2019-2020 was averaged per plot 

and sample date and related to the closest S2 pixel. 

Field-scale modelling. For the 2018 study, we extracted the spectral data of the multispectral SEQ 

image at each subplot using a 3 x 3 pixel window and related it to the measured field data in a statistical 

modelling approach (7 plots; 84 observations for model development). We tested two machine learning 
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(ML) approaches: random forest (RF; Breiman, 2001) and Gradient Boosting Machines (GBM; 

Friedman, 2001) with different permutations of input datasets (raw reflectance values, vegetation indices 

[VI, n = 19], CH) to estimate DM. The CH was used in addition to spectral data to investigate the potential 

of canopy surface models derived from high-resolution UAS data as further predictor variable (e.g., 

Lussem et al., 2019). A 6-fold cross-validation and hyper-parameter calibration was applied to optimize 

the predictive models. Data from the 3 remaining plots were used for external model validation. 

Regional modelling. We used S2 level 2A data from Mar-Nov 2019 and all available plot-level field 

data from 2019 (11 plots with varying number of sampling dates; in total 70 observations) to create a 

statistical model for DM estimation. S2 data was pre-processed with the MAJA algorithm version 3.3 

and cloud mask (Hagolle et al. 2017), resampled to 20 m x 20 m pixel size, and the Enhanced Vegetation 

Index (EVI; Huete et al. 2002) was calculated. For each field observation the S2 reflectance data of 10 

bands (excluding the atmospheric bands 1, 9, 10) and the corresponding EVI were extracted. If there 

was no cloud-free satellite observation from the day of field sampling, the days before (up to 4) were 

checked one by one, and then up to 4 days after to find the closest satellite observation. A RF model 

was built using all reflectance bands and the EVI as predictor variables. The data set was split into 

training (80%) and test data (20%). The developed model was used to model the DM in the Ammer 

region exemplarily for the 17/05/2019, a date on which UAS flights were also conducted to allow for later 

comparison between field and regional modelling approaches. 

Results and discussion 

Field-scale modelling. The ML algorithms RF and GBM show very similar results for the estimation of 

DM in terms of coefficient of determination (R²) and root mean square error (RMSE; Table 1). Both the 

addition of VI as well as CH improved the model performance compared to the sole use of raw 

reflectance values. As expected, the improvement for CH was stronger, as CH is a predictor from a 

completely different domain. The best model performance was achieved by a RF model utilizing all 

available input data. Our results indicate the benefit of additional predictors in the estimation of DM. 

However, for optimal prediction quality the acquisition of a digital canopy height model is necessary, 

requiring an additional UAS-based high-resolution RGB dataset. 

Table 1. Cross-validated modelling results for DM estimation in 2018 with RF & GBM models using UAS 

data. 

Predictor set R2 (RF) RMSE [g m-2] (RF) R² (GBM) RMSE [g m-2] (GBM) 

Raw reflectance 0.48 57.6 0.51 56.2 

Raw reflectance + CH 0.69 44.2 0.70 44.1 

Raw reflectance + VI 0.55 53.9 0.56 53.2 

Raw reflectance + CH + VI 0.71 43.4 0.70 43.6 

Regional modelling. The developed RF model using the regional data set achieved good prediction 

results for the multi-temporal DM estimation in 2019 (R² = 0.78, RMSE = 32.6 g m-²). The calibrated 

model was subsequently used to estimate DM in the Ammer region (Figure 1). This satellite-based 

approach relies solely on multispectral information from S2 as input data and the field data base to build 

the model. The modelling of the temporal evolution of the grassland DM in 2019 in the Ammer region is 

underway. Here, the availability of cloud-free S2 images is the most crucial element. 

Conclusions 

ML algorithms that utilize multispectral remote sensing data showed promising results for the estimation 

of DM in pre-Alpine grasslands at field and regional scales. The choice of input feature was more 

important than the one of the ML model. Both, the UAS and the satellite approach rely on a sound field 

data sets for calibration and validation. 
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Figure 1. Estimated DM (linear colour interpolation) on 17/05/2019 based on S2 data in the Ammer 

region (left) and a zoom-in (right). Reference sites partially covered by clouds (grey); study area masked 

with High Resolu-tion Grassland Layer 2015 (light grey, © European Union, Copernicus Land Monitoring 

Service 2018, EEA) 
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Abstract 

The objective was to test the reliability of height and biomass measurements of lucerne by digital 

photogrammetry using an unmanned aerial vehicle (UAV). Height measurements were recorded on a 

variety trial involving 440 microplots of pure stand lucerne over two years from April 2019 to November 

2020. For comparison, manual measurements of plant height and dry matter yield (DMY) were 

performed the same day as the UAV acquisitions at the end of eight growth cycles. The model Phantom 

4 Advanced (DJI) with mounted RGB camera equipped with a 20-megapixel CMOS sensor was used 

for image acquisition. The flights occurred at an altitude of 9 m to achieve a resolution of 2 mm. When 

UAV heights were calculated using 100% of the pixels of the canopy height model, the correlation 

between heights and DMY derived from UAV acquisitions were greater than those derived from manual 

measurements. Regressions on the set of flights per year between UAV heights and DMY were similar 

with high correlation coefficients in 2019 and 2020 (0.89 and 0.96, respectively). We conclude that UAV 

equipped with a high-resolution RGB camera allow rapid acquisition and data treatment and predicting 

reliable results of canopy height and DMY for the lucerne. 

Keywords: photogrammetry, dry matter yield, phenotyping, RGB imagery, remote sensing, forage 

species 

Introduction 

With more than 33 million hectares sown worldwide, lucerne (Medicago sativa L.) is the most cultivated 

perennial forage legume. Due to its high nutritive value, including 15 to 22% crude protein, this legume 

is well-suited for animal feed and its cultivation provides many ecological and environmental benefits 

such as improving soil fertility and preventing soil erosion. However, improvement in lucerne biomass is 

in high demand. Genetic progress for this complex trait has lagged behind other crops due to the tedious 

measurements required by the phenotypic selection work. Because of the perennial nature of this 

species, measurements of plant dry matter have to be repeated 4 to 5 times per year for two years while 

height has to be measured several times per growth cycle. Moreover, biomass is a complex trait 

controlled by a combination of multiple genes and their interactions with environmental factors so that 

breeding programmes should be implemented across multiple environments. To achieve rapid genetic 

improvement, high selection intensity with fast and low cost phenotyping tools is required. Sensors 

mounted on unmanned aerial vehicles (UAVs) are versatile and affordable tools allowing flights to be 

performed on large collections of breeding varieties with a high temporal resolution to follow the crop 

status and the dynamic of crop growth (Borra-Serrano et al., 2019; Surault et al., 2019). Images deliver 

a high spatial resolution. The main limitations remain in the fine-tuning required for each crop and trait 

(Hund et al., 2019). Recently, Tang et al. (2021) developed a model incorporating four features resulting 

from simultaneous UAV RGB and multispectral acquisitions that was able to predict 50 to 70% (R²) of 

biomass variation. The objective was to test the reliability of height and biomass measurements of plant 

canopy on a variety trial of lucerne by digital photogrammetry using UAV RGB only. 

Materials and methods 

Height measurements were carried out on a variety trial comprising 440 microplots of pure stand lucerne 

at the end of 8 growth cycles from April 2019 to November 2020. The trial was organized in a 4 block 

augmented design. A total of 387 varieties were tested including 5 varieties with 6 replicates (n = 6), 28 

varieties with 2 replicates (n = 2) and 354 with 1 replicate (n = 1). The surface of each plot was 5 m². 

The model Phantom 4 Advanced (DJI) with mounted RGB camera equipped with a 1 inch and 20-

megapixel CMOS sensor oriented in a nadir position was used for image acquisition. The flights 

occurred at an altitude of 9 m with 2 m spacing between the flying lines to achieve a ground soil distance 

of 2 mm and ensuring an overlap of 80% between images. Plant heights, measured manually using a 

ruler or a rising plate meter (RPM) and UAV acquisitions were performed at the end of each growth 

cycle just before mowing with a Haldrup plot harvester. Plant dry matter yields (DMY) were assessed 
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from the fresh biomass collected at the time of the mowing and the dry matter proportion in samples. 

The SfM software Agisoft Photoscan v1.2.6 Professional Edition (Agisoft LLC) was used to build 

georeferenced orthophotos and the digital elevation models (DEMs) with a resolution of 4 mm. The 

DEMs resulting from each measurement date were linked to each other using 60 ground control points. 

Canopy height models (CHMs) were built from the DEMs under QGIS v2.14.16Essen (QGIS Geographic 

Information System; Open Source Geospatial Foundation Project). For each plot, the CHMs were 

obtained by subtracting altitude of the pixels of the DEM at the date of measurement to the altitude of 

the pixels of the DEM after a mowing. From a previous test, 100% of the pixels of the CHM were used 

for the estimation of UAV heights. The correlation of measured and UAV plant heights with observed 

dry matter yield was evaluated. 

Results and discussion 

Correlations were established per growth cycle between manual and UAV heights with DMY (Figure 1A 

and B). 

 

Figure 1. Comparison of manual and UAV height measurements for the prediction of the observed dry 

matter yield of lucerne. Regression are presented per date (A, B) and per year (C, D). Confidence 

intervals are displayed in grey around the regression lines. 

Higher correlation coefficients were obtained between UAV heights and DMY (0.75, 0.78, 0.64, 0.73, 

0.039, 0.87, 0.92, 0.14) than between manual heights and DMY (0.56, 0.47, 0.36, 0.46, 0.25, 0.59, 0.63, 

0.2) except for two dates. Due to lodging occurrence on most of the microplots, the flight of the 

18/05/2020 (R² = 0.039, Figure 1B) had to be discarded from the correlations. In this situation, height 

performed manually with a ruler on extended plants predicted more correctly DMY than UAV height. 

Regressions obtained per cycle (Figure 1B) and on the set of flights per year (Figure 1D) between UAV 

heights and DMY were similar with high correlation coefficients in 2019 and 2020 (0.89 and 0.96, 
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respectively). The correlation coefficient of the complete set of flights was 0.94 (data not shown). 

Correlations between plant heights derived from manual measurements with a ruler or a RPM and DMY 

(Figure 1C) were less reproducible than those derived from UAV measurements (Figure 1D). 

Conclusions 

We conclude that using UAV equipped with a high resolution RGB camera allows a reliable prediction 

of and lucerne dry matter yield (R² = 0.94). Widespread use of this new method should significantly 

contribute to fasten genetic progress in lucerne breeding.  
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Abstract 

The choice of the pixel resolution for the production of the digital elevation model (DEM) using Structure 

from Motion (SfM) software can largely influence the time of data treatment and the required data 

storage capacity. The objective of this study was to investigate the effect of the DEM resolution on height 

measurements of five perennial forage species. Images were acquired with a UAV, model Phantom 4 

Advanced (DJI, China). Three flights were repeated 5 days apart in June 2018 on a trial involving pure 

stand microplots of two grass (orchard grass and tall fescue) and three legume species (alfalfa, red 

clover and white clover). The flights occurred at an altitude of 9 m above the ground to achieve an image 

resolution of 2 mm. The DEMs were built with a pixel resolution of 2, 4 and 8 mm using the SfM software 

Agisoft Photoscan (Agisoft Ltd, Russia). The results were compared to the height measured manually 

with a ruler at the same time as UAV acquisitions. The effect of DEM resolution on height measurements 

differed according to the species. For the three legume species, similar and reliable regressions between 

manual and UAV height measurements were obtained with the three tested resolutions for the three 

dates (0.88 < R² < 0.97). The most reliable regressions were obtained for the orchardgrass (R² > 0.81) 

with a DEM resolution of 4 mm. The results obtained for tall fescue were less reliable than for the other 

species. The highest regressions between manual and UAV height measurements for this species (0.56 

< R² < 0.71) were obtained with the lowest DEM resolution (8 mm). 

Keywords: photogrammetry, plant height, phenotyping, RGB imagery, remote sensing, forage species 

Introduction 

Phenotyping methods were identified as the main limiting factor to the improvement of annual yield gain 

of cultivated grassland and their resilience to biotic and abiotic stresses (Gebremedhin et al., 2018). 

One way to overcome the slow progress in genetic improvement in forage species is through the 

improvement of precision phenotyping tools. Unmanned aerial vehicles (UAV) equipped with high 

resolution consumer grade Red-Green-Blue (RGB) cameras are versatile and affordable tools that allow 

the screening of large collections of breeding varieties in a high-throughput manner (Borra-Serrano et 

al., 2019; Hund et al., 2019; Surault et al., 2019). However, the method is not yet widely used in routine 

in breeding programmes due to the particular precautions required for image acquisition with good 

quality and the complex data computation process that has to be fine-tuned for each trait and crop (Hund 

et al., 2019). Images can be captured with sufficient quality only if different parameters are considered 

when planning a flight. Such parameters are the number and placement of ground control points (GCPs) 

for georeferencing, the flying height and the sensor size and resolution that determine the range of 

ground covered by a sensor pixel (GSD). Overlapping higher than 60% between images also needs to 

be achieved. Images are processed using a Structure from Motion (SfM) software to generate highly 

detailed orthophotos and digital elevation models (DEMs) that deliver a millimetre pixel resolution. The 

choice of pixel resolution to build the DEMs influences the time of data processing and the disk space 

required for data storage, which can be problematic when data for many breeding programmes have to 

be analysed. This pixel resolution can be modified at the time of the DEMs building while its effect on 

the canopy height measurements is not known. The objective of this study was to investigate the effect 

of the DEM resolution on canopy height measurements of five perennial forage species. 

Materials and methods 

Data were acquired during the second year of a trial organized in 4 blocks and involving 140 pure stand 

microplots (6.25 m²) of two grasses: orchardgrass (Dactylis glomerata L.) and tall fescue (Festuca 

arundinacea L.) and three legume species: alfalfa (Medicago sativa L.), red clover (Trifolium pratense 

L.) and white clover (Trifolium repens L.). The species were sown at a single or double density. Half of 

the microplots sown with grasses were fertilized with nitrogen at 50 kg N ha-1. Plant heights were 
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measured on three different days in June 2018. Manual height was performed using a ruler and the 

resulting values used as the average of three measurements recorded per plot. On the same days, three 

flights were repeated using the model Phantom 4 Advanced (DJI, China) with mounted RGB camera 

equipped with a 1 inch and 20-megapixel. The CMOS sensor oriented in a nadir position was used for 

image acquisition. The flights occurred at an altitude of 9 m above ground with 2 m spacing between 

the flying lines to achieve a GSD of 2 mm and ensuring an overlap of 80% between images. Twenty 

GCP equally spread in the four blocks were georeferenced. The SfM software Agisoft Photoscan v1.2.6 

Professional Edition (Agisoft LLC, Russia) was used to build georeferenced orthophotos and the DEMs 

with a pixel resolution of 2, 4, and 8 mm. The DEMs resulting from each measurement date were linked 

to each other using the 20 GCPs. Canopy height models (CHM) were built from the DEMs under QGIS 

v2.14.16Essen (QGIS.org, 2021). For each plot, the CHM were obtained by subtracting altitude of the 

pixels of the DEM at the date of measurement to the altitude of the pixels of the DEM after a mowing. 

The correlation coefficients of the regression between manual and UAV plant height measurements 

obtained from the different resolution of the DEMs were compared. 

Results and discussion 

The average variance value after adjustment of the GCPs was 2.9 cm, 2.5 cm and 1.4 cm on X, Y and 

Z coordinates, respectively. The time of data processing, and the disk space required for data storage, 

were divided by 12.3 and 14.6 respectively when the DEM resolution reduced from 2 mm to 8 mm. The 

average percentage of null pixels of the DEMs increased from 0.9 to 8.2% with increasing resolution 

from 8 mm to 2 mm. The pixel distribution between the horizontal layers of the CHM was also modified 

by the DEM resolution for all species (data not shown). The effect of the resolution on height 

measurements differed according to the species. The value of the highest pixel of the CHM was, on 

average, increased from 7.2 to 14.1 cm according to the species when increasing pixel resolution of the 

DEMs from 8 mm to 2 mm. In legumes, similar and reliable UAV heights were obtained with the three 

tested resolutions and have not been further detailed across species (Table 1). 

Table 1. Effect of the DEMs resolution 2, 4 and 8 mm on the coefficients of the regressions between 

UAV (y axis) and manual (x axis) height measurements, three dates in June 2018. 

 

DEM Resolution 

R² 
 

Slope 
 

Intercept 

14/06 19/06 25/06 
 

14/06 19/06 25/06 
 

14/06 19/06 25/06 

Tall fescue 
        

   

2 mm 0.39 0.40 0.41 
 

1.01 1.11 0.97 
 

-7.75 -3.92 0.26 

4 mm 0.50 0.50 0.48 
 

1.11 1.30 1.07 
 

-12.99 -10.79 -5.21 

8 mm 0.64 0.56 0.71 
 

1.05 1.42 1.32 
 

-14.12 -16.02 -15.86 

Orchardgrass            

2 mm 0.85 0.79 0.93 
 

1.07 1.29 1.19 
 

-8.70 -7.63 -7.90 

4 mm 0.86 0.81 0.94 
 

1.10 1.29 1.20 
 

-11.62 -9.39 -9.53 

8 mm 0.85 0.82 0.94 
 

1.13 1.36 1.23 
 

-14.95 -13.58 -12.38 

Legumes           

2 mm 0.97 0.88 0.96 
 

1.07 0.98 0.95 
 

-4.34 2.70 4.89 

4 mm 0.96 0.89 0.96 
 

1.07 0.96 0.95 
 

-5.00 3.05 4.69 

8 mm 0.96 0.90 0.96 
 

1.07 0.98 0.96 
 

-5.87 2.08 3.59 

High correlation coefficients (0.88 – 0.97) were achieved between UAV and manual heights at the three 

resolutions (Table 1). For orchard grass, the DEM resolution had no effect on R² and modified only very 

slightly the slope; the gap on the intercept was reduced from 4.48 to 6.25 cm according to the date with 

increasing DEM resolution from 8 mm to 2 mm. The regression obtained between UAV and manual 

heights for tall fescue was less reliable than for the other species. For this species, the highest R² was 

obtained with the lowest DEM resolution (8 mm) for the three dates (0.56 < R² < 0.71) while the gap on 

the intercept was reduced from 6.37 to 15.6 cm according to the date at the highest resolution (2 mm) 

and that the slopes were decreasing closer to 1 (Table 1). The differences between species probably 

result from the difference in shape and width of plant leaves. 
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Conclusions 

Our results show that the pixel resolution used to build the DEMs had a significant effect on plant height 

measurement, varying according to plant species. For the three forage legume species, and also for 

orchardgrass, reliable canopy height estimations have been achieved in comparison to those for manual 

heights. A pixel resolution of 8 mm of the DEMs provides the best results for the three legume species, 

while this was obtained in orchardgrass at a resolution of 4 to 2 mm. The results obtained in tall fescue 

were not fully satisfactory. Further analyses are still required for this species. 
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Estimating grassland biomass using multispectral UAV imagery, DTM 

and a random forest algorithm 

Sutter M., Aebischer P. and Reidy B. 

School of Agricultural, Forest and Food Sciences HAFL, Bern University of Applied Sciences, 

Switzerland 

Abstract 

A prerequisite for efficient pasture management is the regular estimation of the dry matter yield (DMY) 

by means of a rising plate meter (RPM). With the latest generation of unmanned aerial vehicles (UAV) 

equipped with a real-time kinematic (RTK) positioning system and a multispectral camera, it should be 

possible to measure sward heights and to estimate dry matter yields. To investigate this possibility, we 

developed an algorithm enabling a digital terrain model to be calculated from the digital surface model 

of grassland. DMY is estimated using a random forest estimator. Initial estimates at a previously unseen 

site achieved a root-mean-square error (RMSE) of 332 kg DM ha-1. The results demonstrate that UAVs 

enable DMY predictions with an accuracy level close to RPM measurements. The underlying algorithm 

will be further developed and adapted to a wider variety of pasture types and meadows. 

Keywords: grassland, machine learning, random forest, NDVI, remote sensing, dry matter yield 

Introduction 

In Switzerland, more than 70% of the utilised agricultural area consists of grasslands with a very diverse 

species composition and a heterogeneous growth pattern. A prerequisite for efficient grazing 

management is the regular estimation of the dry matter yield (DMY) by manual measurements of the 

sward height using a rising plate meter (RPM). With the latest generation of unmanned aerial vehicles 

(UAVs) equipped with a real-time kinematic (RTK) positioning system and a multispectral camera, it 

should be possible to measure sward heights and to estimate DMY over large areas with high accuracy 

(Viljanen et al., 2018). However, to date, such approaches have required manual georeferencing with 

complex data processing. The calculation of a digital terrain model (DTM) based on a digital surface 

model (DSM) could help to overcome the limitations of manual georeferencing. This would make it 

possible to measure the vegetation height without prior marking of the area of interest with ground 

control points (GCPs) and subsequent referencing of the image, resulting in a significant improvement 

in the degree of automation. In this paper, we present an algorithm to calculate a DTM based on a DSM 

of pastures and meadows allowing DMY to be estimated based on a random forest model. 

Materials and methods 

DMY was calculated using a random forest estimator. To provide the model with robust data and to 

make it as reliable as possible to reflect seasonal growth patterns, swards of intensively managed 

meadows (experimental plots with a size of 4 m2, 45 plots x number of overflights: n = 1026) at two 

different locations were flown over weekly with a UAV (DJI P4 Multispectral) from April to October 2020. 

Data from two additional sites of pastures from commercial farms (where partial areas of 30 m2 were 

evaluated, 38 plots x 4 overflights: n = 152) were used as training data. In total, the training data set 

thus comprised 1178 polygons from four different sites and two utilization types (grazing and mowing). 

After flying over the meadows with the UAV, the DMY was determined by cutting (cutting height: 5 - 7 

cm), weighing and drying sward samples (target variable). The model was tested with test data (n = 

106) not included in the training data set from independent sites. 

The pictures were taken without ground control points and were stitched to a 3-D model with Agisoft 

(Agisoft Metashape, 2020). We used a calibrated reflectance panel (MicaSense) with a nominal 

reflectance of 0.6 to radiometrically correct reflectance. The gain settings captured from the sunlight 

sensor were not used for radiometric calibration. A pixel size of 4 cm was chosen for the 3D model 

(DSM) and a pixel size of 3 cm for the orthomosaic with the five channels blue, green, red, red edge and 

near-infrared. 
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Based on the DSM, a DTM was generated with a kind of 'digital mower' making ground control points 

obsolete. The missing data were first interpolated and then the minima in the DSM were searched 

through a minimum filter of 1.5 on 1.5 metres. The DTM was subsequently smoothed with a two-

dimensional Gaussian filter of 4.5 on 4.5 metres. The difference between the DSM and the DTM resulted 

in the sward height per pixel. To counteract divergences in the DTM, especially in areas with more 

complex topographies, the calculated sward height per pixel was smoothed again. For flat meadows 

this step seems redundant and the re-smoothing hardly changed the distribution of the grass height. 

Finally, the calculated average sward height for each plot was used for further calculations (Figure 1). 

 

Figure 1. Example of a digital terrain model (DTM) calculated on the basis of an automatically generated 

digital surface model (DSM). 

Results and discussion 

To evaluate the DTM, meadows at three different locations (Figure 2) were flown over before and 

immediately after cutting. The difference between the two flights represents the average height of the 

swards. The R-squared value of 0.9 indicates that the results of the digital mower were a good 

representation of the sward heights measured in the field. 

 

Figure 2. Evaluation of the 'digital mower' at three different locations in 2019 and 2020. 

The DMY data was incorporated into the model as target variable. Based on the 3D model (DTM and 

DSM) and the images from the multispectral camera, 42 input variables were available for modelling the 

DMY. 
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The random forest model considers 14 input variables to estimate the target variable DMY: Average 

sward height, standard deviation of the average sward height, maximum and minimum sward height, 

normalized difference vegetation index (NDVI), green normalized difference vegetation index (GNDVI), 

soil-adjusted vegetation index (SAVI), green chlorophyll index (GCI), red chlorophyll index (RCI), 

normalized difference red edge (NDRE), excess green index (EGI), excess red index (ERI), months of 

data collection and shutter speed. In this model, average sward height (17%), SAVI (14%), NDVI (14%), 

GCI (13%) and month (9%) are the most important input variables. The high relevance of the average 

sward height in the model is explained by the saturation effect that occurs in the vegetation indices: 

above a certain biomass, the vegetation indices are no longer accurate representations. In our dataset, 

saturation becomes apparent from around 2500 kg DM ha-1. As a consequence, the indices for a 

biomass of 2500 kg DM ha-1 hardly differ from those for 4000 kg ha-1 (i.e. NDVI 0.9 and 0.95, 

respectively). This limitation of the vegetation indices is already well described in the literature, for 

example by Prabhakara et al. (2015).  

The test results of our model yielded a root-mean-square error (RMSE) of 332 kg DM ha-1 and a residual 

standard error of 335 kg DM ha-1. The mean error of -90.21 kg DM ha-1 indicates that the model tends 

to underestimate ground truth. Schori (2020) tested RPM over several years at different sites in 

Switzerland. The author concluded that RPM estimates grass biomass well (R2 = 0.77). However, 

despite these high R-squared values, the residual standard error was 272 kg DM ha-1.  

Conclusions 

Our results show that it is possible to estimate the DMY of pastures and meadows with a commercially 

available UAV, although the accuracy of the estimate with the available training data is slightly lower 

compared to that of a manual measurement with a RPM. To enable the digital mower to work, minima 

must be present within the area. However, with our intensively managed plots (cuts every four weeks, 

annual yield ≥12 Mg ha-1), we were able to find enough minima to model the DTM at any given time. To 

further reduce the estimation error, training data will be supplemented with additional data from swards 

with greater botanical heterogeneity and extended to the DMY range < 1000 kg ha-1 in the future.  
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in extensive grasslands invaded by Lupinus polyphyllus 
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Abstract 

Heterogenous, extensive grasslands are at risk from the spread of invasive plant species which can 

pose significant impacts from the ecosystem down to the species level. The aim of this study was to 

develop prediction models from sensor data fusion for fresh and dry matter yield (FMY/DMY) in 

extensively managed grasslands with variable degrees of invasion by Lupinus polyphyllus. Therefore, a 

terrestrial 3d laser scanner and a drone based hyperspectral camera was used. VSURF, a feature 

selection procedure was used to remove irrelevant features and ALE (Accumulated Local Effects) plots 

were utilized to gain a deeper quantitative understanding of a single feature on the prediction output. 

Models from hyperspectral data solitarily had the lowest prediction performance, followed by models 

derived from 3d laser data. A fusion of both sensor systems gained the highest prediction performance. 

Remote sensing data fusion from complementary sensor systems in combination with feature selection 

can increase the biomass prediction performance as well as the simplicity and interpretability of biomass 

prediction models. Further, the lowest over- and underprediction was found with lupine contributions 

between 20 and 40%. It could be shown that the abundance of invasive species can impact the quality 

of remote sensing-based FMY and DMY prediction in grasslands. 

Keywords: sensor fusion, biomass prediction, feature selection 

Introduction 

The biosphere reserve Rhön is a historically grown landscape, characterized by heterogenous 

grasslands which provide valuable ecosystem services and are a wildlife habitat for multiple endangered 

species. The spread of invasive species like Lupinus polyphyllus transforms the ecosystem and 

degrades the biocenosis quality for native species which were adopted to the original environment. 

Further, dominance of L. polyphyllus also changes the heterogeneity of the sites and this increases the 

difficulty of gaining its qualitative and quantitative parameters. As remote sensing methods allow to 

survey larger areas, and thereby to access information on biomass yield in large spatial dimensions, 

they provide potentially high value for heterogenous grassland sites, where traditional yield estimation 

methods would be highly time consuming. To improve the performance of remote sensing methods 

towards enhanced biomass models, sensor fusion is considered a good extension (Schulze-Brüninghoff 

et al., 2020). Therefore, 3d point cloud information derived by a terrestrial laser scanner (TLS) and 

hyperspectral drone-based data was combined to predict biomass in four heterogenous extensive 

grasslands. To reduce redundancy of the sensory datasets and increase model performance and 

interpretability a feature selection was applied. 

Materials and methods 

Data collection took place at four sites. A Nardus stricta grassland (NS), a Trisetum flavescens grassland 

(TF) and two sites invaded by L. polyphyllus (NSL, TFL). Each site had 15 plots and 3 cutting dates (15 

June, 27 June and 11 July). At each cutting date drone-based hyperspectral data were collected with a 

Firefly S185 SE (Cubert GmbH, www.cubert-gmbh.com) at a spectral range from 450 to 998 nm (138 

bands) and a spatial resolution of 50x50 pixels per image. Flight altitude was at 20 m above ground 

level with a pixel size of 20 cm and images were taken with 80% overlap for image stitching. 

Afterwards, 3d data were collected with a terrestrial laser scanner (Leica Scan Station P30) with a spatial 

resolution of 3.1 mm (@ 10 m). To reduce shadow effects each plot was scanned from two opposite 

directions. Destructive ground reference samples were cut for each plot in three randomly selected 

subplots of 1 m² with a stubble height of 5 cm. Another 3d point cloud was collected in early spring of 

the same year to calculate a digital elevation model (DEM) for all sites. Fresh matter was weighed, and 

dry matter was measured after 48 h at 105° C. 
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Point cloud data were processed with R software (R Core Team 2019) to extract parameters of Mean 

Canopy Surface Height, Sum of Voxels and Canopy Surface Structure as described by (Schulze-

Brüninghoff et al., 2020). Hyperspectral data for each spectral band was averaged for each 1m² subplot 

and the spectral curves were afterwards normalized by vector normalization. Random forest regression 

was used to develop biomass estimation models with laser and hyperspectral parameters as 

independent features, each separately and in combination. To eliminate irrelevant features from the 

model input, function VSURF from R-Package VSURF (Genuer et al., 2019) was run. Training and test 

data selection (80% to 20%) was done randomly and repeated 100 times to reduce the impact of biased 

sample distribution for the model calibration. Model performance was evaluated by the coefficient of 

determination (R2) and the normalized root mean square error (nRMSE) normalized by range of 

observations. The impact of the included features on the biomass model was interpreted with ALE plots 

(Accumulated Local Effects), which avoid mixing the effect of a feature with the effect of all correlated 

features, as correlated features do not have inevitably an effect on the prediction value (Apley & Zhu, 

2019). 

Results and discussion 

A combination of hyperspectral and 3d laser features gained the highest model performance up to R2 

0.80 and nRMSE 12.0 % for FMY and R2 0.81 and nRMSE 12.1 % for DMY. 

 

Figure 1. Random forest regression model: Normalised deviation between predicted and measured FMY 

and DMY for different contribution of lupin at each reference plot from lupin-invaded grassland sites with 

hundred different model runs. 

Normalized deviation between predicted and measured biomass showed some overestimation for 

samples with low lupin contributions and, vice versa, underestimation for high lupin contributions. 

Between 20% and 40% of lupin contribution, the prediction model showed the lowest normalized 

deviation. 

Feature selection process reduced the fusion model from 307 to a total number of 16 and 29 features 

for FMY and DMY prediction models. Both selections included laser as well as hyperspectral features. 

Most important features for FMY sensor fusion models were mean canopy surface height features, as 

well as wavelength between 845 nm and 858 nm. For DMY prediction models, the most important 

features were the mean elevation of the canopy surface, wavelength in the near infrared region, as well 
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as canopy surface height features. This shows that 3d point cloud information is ideally used with a 

multitude of different features. The important wavelength in the near infrared is known for its sensitivity 

to vegetation biomass. ALE plots showed positive correlation between the intensity of wavelength at 

850 nm and the prediction of FMY. In addition, for DMY prediction the ALE plot showed a negative 

correlation with the reflectance at 946 nm. As this band is near to the minor water absorption band at 

970 nm, the wavelength could probably indicate canopy water content. As DMY is the difference of FMY 

and canopy water content, DMY could be predicted by wavelength near the water absorption bands and 

features sensitive for FMY. 

 

Figure 2. Accumulated Local Effects (ALE) plots of each hundred FMY (left) and DMY (right) sensor 

fusion models. Shown are the main effects (differences in prediction) of the most important features. 

ALE curves are calculated as median curve from each 100 model runs. Rug plots visualise the 

distribution of the feature values from each training data set, where each tick represents one of the 130 

training samples (80% of all samples) for all 100 model runs (13.000 ticks). 

Conclusions 

The combination of complementary sensor systems can increase the performance of biomass 

estimation on extremely heterogenous, extensive grasslands. Such methods may allow the replacement 

of labour-intensive, traditional biomass estimation in the future. The lowest over- and underprediction 

was found with lupin contributions between 20 and 40%. It could be shown that the abundance of 

invasive species can impact the prediction quality of remote sensing-based FMY and DMY prediction in 

grasslands. 
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Using polygon grids to upscale ultra-high resolution UAV data for 

monitoring pastures 
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Abstract 

UAV imaging provides data in ultra-high spatial resolution of smaller than 3 cm. Although such data 

contains valuable information such as green cover and sward height, lower resolutions of e.g. 0.5 m 

meet the demands of monitoring pasture biomass or quality for management purposes. In the spatial 

analysis workflow of field experiment data, zonal statistics are essential to analyse and summarise UAV-

derived data for individual plots or repetitions. Based on this concept, Bareth et al. (2016) proposed 

using polygon grids as zones input for zonal statistics on the field level. In this contribution, we (i) 

introduce the UAV data acquisition of a pasture experiment of the “GreenGrass” project which is funded 

by the BMBF, (ii) present UAV-derived sward growth data and the RGB vegetation index (RGBVI) in 

ultra-high spatial resolution (< 3 cm), and (iii) upscale sward height and RGBVI data using a polygon 

grid of 0.5 m. 

Keywords: UAV, forage, biomass, quality, upscaling, grassland 

Introduction 

Rango et al. (2009) investigated the promising potential of UAV-based monitoring for rangelands. A 

similar study was conducted by Bernie et al. (2009) for agricultural applications. The future potential of 

multi-sensors systems was summarized by Bareth et al (2011). Latest studies confirm the suitability of 

UAV-based sensor systems for monitoring grasslands (Bareth and Schellberg, 2018; Capolupo et al., 

2015; Jenal et al., 2020; Lussem et al., 2020; Näsi et al., 2018; Wijesingha et al., 2020). While such 

UAV sensing systems enable data acquisition in a spatial resolution of smaller than 3 cm, for 

management purposes spatial resolutions of 0.5 m to 2 m seem to be sufficient. However, the ultra-high 

spatial resolution contains essential information on the spatial variability of sward height, quality, and 

cover. In general, for upscaling of such ultra-high resolution image data, so-called resampling methods 

are applied which lose important information. In contrast, zonal statistics are computed on the single 

plot level for field experiment investigations (Bareth et al., 2016). The advantages of zonal statistics are 

that descriptive statistics (min, max, range, mean, std, sum) or even complete histograms can be 

computed for each single zone. Therefore, Bareth et al. (2016) proposed the use of spatially continuous 

polygon grids as zones to compute zonal statistics on the field scale. The objective of this study is the 

investigation of a 0.5 m polygon grid for upscaling ultra-high resolution UAV image data for a grazing 

experiment. 

Materials and methods 

In 2020, the UAV campaigns were conducted at the pasture field experiment “Forbioben” which is 

operated by the Institute of Grassland Science at the Georg‐August‐University Göttingen. The grazing 

experiment is described in detail by Tonn et al. (2019). For the UAV data acquisition, a DJI Phantom 4 

RTK (P4RTK) was used. The P4RTK is equipped with a 1” CMOS sensor capturing RGB images with 

20 megapixels. Stereo photogrammetric analyses using Structure from Motion and Multiview Stereopsis 

(SfM/MVS) were done with Agisoft Metashape. For sward growth analysis, the Digital Surface Models 

(DSM) were analysed in ESRI’s ArcGIS. The vegetation index RGBVI was computed from the RGB 

orthophoto and the 0.5 m polygon grid was generated in ArcGIS. 

Results and discussion 

In Figure 1, the 9 ha grazing experiment, the 0.5 m polygon grid, and the upscaling results of sward 

growth and RGBVI are shown. Spatial resolution of the orthophoto is 1.2 cm. 
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Figure 1. The upper left image shows a UAV-derived orthophoto of the “Forbioben” experiment on 6 

May 2020. The upper right image displays the red marked rectangle in the upper left image including 

the 0.5 m polygon grid. The middle left image represents the computed RGBVI analysis in a full spatial 

resolution of 1.2 cm, while the middle right image shows the mean RGBVI values for the polygon grid. 

In the lower left image, sward growth is displayed in full spatial resolution of 2.4 cm, while the lower right 

image shows the zonal statistics data of the mean sward growth for the 0.5 m polygon grid. 

It is clearly visible from the results presented in Figure 1 that the upscaling of UAV data in ultra-high 

spatial resolution (< 3 cm) using a 0.5 m polygon grid keeps characteristic spatial patterns of sward 

growth and spectral spatial patterns (RGBVI) without losing all valuable information. Descriptive 

statistics or even histograms are stored and can be utilized in a new way of information retrieval for the 

sward's structural and spectral characteristics. In the presented example, for each polygon grid cell of 

0.5 m by 0.5 m, zonal statistics were computed from approx. 1,700 pixels. In total, zonal statistics were 

computed for more than 360,000 polygon grid cells covering the 9 ha of the grazing experiment. 

However, a clear drawback is the computational time, but it could be decreased in case of applying even 

larger polygon grids (e.g. 4 m or 10 m). 
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Conclusions 

As input for GIS-based analysis of zonal statistics, polygon grids serve as a promising approach for 

upscaling UAV data in ultra-high spatial resolution. Polygon grids even bear the potential of upscaling 

such data on the resolution of satellite data like Planet or Sentinel-2. 
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Abstract 

The monitoring of forage production is one of the most important activities for establishing correct 

pasture management. Since above-ground biomass estimation with in-field traditional methods is costly 

in time and money, remote sensing techniques have been largely utilized and improved over the last 

decades to monitor grass growth and forage production. In this trial, we tested the potential of satellite-

based vegetation indices (NDVI, SAVI, PVR, GLI, TVI, VARIGreen) in detecting actual pasture 

production, in terms of fresh biomass and dry matter over extensive grazing systems. Biomass was 

harvested from plots of 1m2-surface wide (8 replicates per each study site) in two areas of Tuscany 

(Central Italy). The vegetation indices were elaborated from Sentinel-2 satellite images, acquired in 

correspondence of the sampling dates, and then correlated to pasture production measured from ground 

surveys. Best results in estimating fresh and dry forage biomass were achieved respectively with NDVI 

(R2 = 0.59) and SAVI (R2 =0.49) but also other indices calculated from bands within the visible spectrum 

showed similar results in above ground biomass estimation. 

Keywords: satellite, above ground biomass, remote sensing, pasture management, vegetation indices 

Introduction 

Remote sensing techniques have proven to be consistent, cost-effective and reliable as a methodology 

for acquiring data and observing vegetation growth and development, and for providing useful 

indications in decision-making processes of agricultural management (Hatfield et al., 2019). Remote 

sensing applications are based on the use of vegetation indices (VIs), strongly related to vegetation 

features (e.g. LAI, biomass, health, canopy height, quality, etc.), derived from the combination of 

different waveband reflectance values captured from specific sensors (Xue and Su, 2017). In this 

context, satellite imagery has been widely applied in grassland studies to perform assessment of pasture 

production and forage quality (e.g. Serrano et al., 2019; Lugassi et al., 2019; Askari et al., 2019). The 

objective of this study is to determine the performance of different vegetation indices derived from 

Sentinel-2 in assessing above ground biomass of extensive mixed pastures over the grazing season. 

Materials and methods 

The trial was conducted in two pastures (S1 and S2) in the Apennines (Central Italy), selected for 

different climatic conditions, altitude (200 m and 600 m asl) and botanical composition. Both sites were 

grazed by Limousin cattle for a large part of the experiment. In each site, samples of aboveground 

biomass from 1 m2-plots (8 replicates per each study site, randomly distributed) were collected over the 

grazing season from 9 field-surveys (5 for S1 and 4 for S2). For the elaboration of the VIs, Sentinel-2 

(Level 2A) images were acquired in correspondence with the sampling dates. These products, 

downloaded as atmospherically corrected, provide a 5 day-temporal resolution and a 10-m spatial 

resolution for reflectance values in band 2 (Blue), band 3 (Green), band 4 (Red) and band 8 (NIR). The 

VIs (Table 1) utilized in this trial were: NDVI, SAVI, PVR, GLI, TVI and VARIGREEN. GLI original formula 

was modified (Band 4 instead of Band 5) to obtain the VI at higher spatial resolution (10 m-resolution of 

band 4 versus 20 m-resolution of band 5). Then, data on pasture production, in terms of fresh biomass 

(FB) and dry matter (DM), were correlated to the VI values. To achieve this result, for each sample point 

previously georeferenced, a buffer with a 10 m-radius was created in order to overcome possible issues 

related to geometric inaccuracy. Finally, the VI mean value, calculated from the values of each pixel 

inside the buffer, was correlated with the observed data for fresh and dry forage biomass (g∙m-2). This 

elaboration was performed with the GIS software QGIS and Semi-Automatic Classification Plug in. 
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Table 1. Vegetation indices utilized in the trial (see Sonobe et al., 2018). 

Results and discussion 

Results of VI-Fresh biomass (FB) and VI-Dry matter (DM) regressions are shown in Tables 2 and 3. For 

each test site, higher R2 values were achieved for FB assessment compared to DM-VIs regression. 

Considering the entire dataset (Total), best results in FB and DM were found, respectively, with NDVI 

(R2=0.59) and SAVI (R2=0.49), but also the other VIs reached similar R2 values. As highlighted in Tables 

2 and 3, better results of R2 were generally obtained for S1. This can be probably explained by the 

specific botanical conditions of the two test sites. The first, S1, is an artificial pasture sown one year 

before the test, homogenous in terms of botanical composition, whereas S2 is a grassland sown several 

years before, with a high level of colonization of spontaneous species and with a considerable presence 

of shrubs, such as Rubus ulmifolius. As a result of distinctive spectral signatures between grasses and 

shrubs (Bayle et al., 2019), the diverse botanical compositions of the pastures probably led to 

differences between S2 and S1 in estimation of FB and DM.  

Table 2. R2 values and equations resulted from VI-Fresh Biomass (FB) regressions for Site 1 (S1), Site 

2 (S2) and Total (Tot). 

 

Table 3. R2 values and equations resulted from VI-Dry Matter (DM) regressions for Site 1 (S1), Site 2 

(S2) and Total (Tot). 

Conclusions 

The results of the trial highlight the suitability of vegetation indices derived from Sentinel-2 in detecting 

FB and DM of multispecies pastures, especially in those characterized by homogeneity in botanical 

conditions, as S1. VIs based on NIR reflectance (i.e. SAVI, NDVI, TVI) and those based only on 

reflectance in the visible spectrum (PVR, GLI, VARIGREEN) indicates similar results. Subsequently, their 

NDVI (Normalized Difference Vegetation Index) (RNIR - RR)  /  (RNIR + RR) 

SAVI (Soil-Adjusted Vegetation Index) (RNIR - RR) * (1+0.5)  /  (RNIR + RR + 0.5) 

PVR (Photosynthetic Vigour Ratio ) (RG - RR)  /  (RG + RR) 

GLI (Green Leaf Index) (2 RG - RR - RB)  /  (2RG + RR + RB) 

TVI (Transformed Vegetation Index) √𝑁𝐷𝑉𝐼 + 0.5 

VARIGREEN (Visible Atmospherically Resistant Index) (RG - RR) / (RG + RR - RB) 

Vegetation Index R2 S1 Eq. S1 R2 S2 Eq. S2 R2 Tot Eq. Tot 

NDVI 0.66 y = 1.0857e7.6547x 0.52 y = 4.2926e6.076x 0.59 y = 1.9418e7.0005x 

SAVI 0.63 y = 3.3115e8.4554x 0.51 y = 5.4321e7.952x 0.58 y = 3.9136e8.3455x 

PVR 0.58 y = 72.929e8.2141x 0.59 y = 119.19e6.3312x 0.57 y = 91.357e7.3231x 

GLI 0.66 y = 24.821e11.069x 0.48 y = 53.288e8.8288x 0.57 y = 34.692e10.135x 

TVI 0.65 y = 3E-06e16.511x 0.51 y = 0.0003e12.787x 0.58 y = 2E-05e14.931x 

VARIGREEN 0.55 y = 75.333e5.3969x 0.62 y = 119.27e4.1059x 0.57 y = 93.495e4.7466x 

Vegetation Index R2 S1 Eq. S1 R2 S2 Eq. S2 R2 Tot Eq. Tot 

NDVI 0.56 y = 0.6981e6.5362x 0.46 y = 4.2427e4.6143x 0.48 y = 1.4848e5.7603x 

SAVI 0.52 y = 1.8933e7.129x 0.50 y = 4.161e6.4284x 0.49 y = 2.4644e7.0059x 

PVR 0.47 y = 25.942e6.8499x 0.49 y = 54.473e4.6216x 0.44 y = 36.211e5.852x 

GLI 0.55 y = 10.401e9.3067x 0.39 y = 30.217e6.4531x 0.44 y = 16.652e8.1146x 

TVI 0.56 y = 1E-05e14.133x 0.45 y = 0.0025e9.7632x 0.47 y = 0.0001e12.325x 

VARIGREEN 0.44 y = 26.677e4.4961x 0.50 y = 54.468e2.9997x 0.44 y = 36.81e3.8026x 
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potentiality in pasture biomass assessment, both for FB and DM, could be tested in sites with different 

vegetation conditions (e.g. botanical composition and shrub coverage) and further investigated by using 

images at finer spatial resolution by means of low-cost Unmanned Aerial Vehicle (UAV) or RGB cameras 

installed in pastures proximity. Employment of these remote sensing techniques seems to open new 

perspectives in pastoral resources planning. 
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Abstract 

Highly productive forage grass cultivars capable of withstanding water shortage without suffering huge 

yield penalty are a desirable outcome of any breeding programme. In this study we propose a water 

deprivation tolerance in combination with leaf growth under controlled conditions and plant yield under 

field conditions as a tool to select superior genotypes to be used as parent plants in pre-breeding. A 

panel of 107 perennial ryegrass ecotypes, mostly originating from Lithuania and Ukraine, were used. 

Leaf elongation was measured using a phenotyping platform, designed to track it with high temporal 

resolution. Tolerance was calculated as a measure of time span between the points when the plant 

reduces growth and arrests it under water stress. There was a moderate correlation (r = 0.41, P < 0.05) 

between leaf elongation under optimal conditions and tolerance, indicating the presence of fast growing 

and stress-tolerant plants in the panel. Analysis of these traits in combination with dry matter yield 

allowed us to pinpoint genotypes that can be used as stress tolerance donors in the crosses with 

superior cultivars without reducing the yielding capacity of the offspring. 

Keywords: dry matter yield, perennial ryegrass, pre-breeding, water deprivation 

Introduction 

Plant breeding aimed at improving perennial ryegrass dry matter yield has led to a 3.2% increase per 

decade (Sampoux et al., 2011). However, under climate change, temperate regions face mild summer 

droughts which reduce yield and escalate crop demand. Therefore, drought tolerance research has 

received increasing attention to understand the mechanisms causing yield loss. High forage yield and 

quality makes perennial ryegrass (Lolium perenne L.) the predominant forage grass species known for 

its rapid response to drought because it requires a relatively large amount of water to sustain growth 

(Norris, 1985). Mild drought does not threaten the survival; however, plant growth slows down before 

leaf water content decreases, leading to reduced biomass accumulation, which is the main yield target 

in forage crops (Jaškūnė et al., 2020). Biomass accumulation is mainly determined by leaf growth, the 

effect of water limitation on its growth could be used as a diagnostic tool to assess drought tolerance of 

the plant. From a breeder’s perspective, combining elite genotypes having high growth rate with an 

ecotype responding late to water stress could result in a high yielding drought-tolerant cultivar. The aim 

of the study was to broaden the genepool in pre-breeding programs by identifying fast growing and high 

yielding ecotypes exhibiting superior tolerance to mild drought. 

Materials and methods 

A perennial ryegrass panel, consisting of cultivars and ecotypes, was investigated in the field and 

controlled environment trials. A subset of 107 perennial ryegrass ecotypes, originating from Lithuania 

(35), Ukraine (55), Latvia (2), Poland (2), Slovakia (2), Denmark (1), and Russian Kaliningrad region 

(10) were used in this study. The growing leaf was attached to a string and kept taut while plastic beads 

threaded onto the string and placed on the growth array provided landmarks for image-based tracking. 

Images of the growth array were taken every 2 min and analysed with the LLT software. To induce a 

water deficit stress, plants were deprived of water for 130 h. Soil moisture was measured every 4 h 

using integrated sensors. Drought tolerance was calculated using Tri-Phase function as described in 

Yates et al. (2019). Detailed descriptions of the genotypes and leaf growth tracking method are 

presented in Jaškūnė et al. (2020). The field experiment was performed at LAMMC Institute of 

Agriculture (55°40 N, 23°87 E) in 2013 and 2014. Single plants were planted at 50 × 50 cm distances 

using a randomized complete block design with 4 replications. Dry matter yield per plant was determined 

as described in Statkevičiūtė et al. (2015). Statistical analysis was implemented in the open-source R 

statistical environment v.4.0.2 (R Core Team, 2020). 
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Results and discussion 

Even though dry spells are becoming more common in Lithuania during the vegetation season, weather 

conditions during 2013 and 2014 did not provide the possibility to assess tolerance to water deprivation 

of the genotypes. Mean dry matter yield per plant (DMY) varied significantly between the years (83.2 g 

± 28.8 in 2013; 178.5 g ± 66 in 2014), and it was most likely affected by different overwintering conditions 

and weather temperatures in spring. The mean leaf growth rate was 0.061 ± 0.021 mm.h−1.◦C−1 and 

mean tolerance was 1.47 ± 0.68 log10 (hPa) (Table 1). 

Table 1. Phenotypic traits of perennial ryegrass ecotypes (mean ± sd). 

Trait 
Ukrainian origin 

n = 55 
Lithuanian origin 

n = 35 
Russian origin 

n = 10 
Other 
n = 7 

Dry matter yield 2013, g  75.2 ± 26.98 93.43 ± 27.15 76.37 ± 37 76.37 ± 34.45 

Dry matter yield, 2014, g 199.73 ± 62.51 155.0 ± 61.28 130.91 ± 50.46 130.91 ± 50.46 

Leaf growth rate, 
mm.h−1.◦C−1 

0.06 ± 0.02 0.06 ± 0.03 0.06 ± 0.02 0.06 ± 0.03 

Tolerance, log10 (hPa) 1.47 ± 0.63 1.35 ± 0.70 1.58 ± 1.09 1.58 ± 1.09 

There was no correlation between tolerance and DMY, which was not surprising as plants did not 

experience water shortage in the field experiment. There was also no correlation between leaf growth 

rate and DMY. However, plants seldom experience ideal growing conditions in the field; moreover, leaf 

growth, even though an important factor, does not determine the yield alone, as traits such as tiller 

number, leafiness etc. also come into play. A moderate correlation (r = 0.41, P < 0.05) was calculated 

between leaf growth rate under optimal conditions and drought tolerance. Wild genotypes usually are 

not high-yielding and are employed in pre-breeding as donors of stress resistance; however, productive 

genotypes can also be found in natural environments (Bachmann-Pfabe et al., 2018). The combination 

of field DMY data with drought tolerance in PCA analysis enabled us to pinpoint the genotypes superior 

in both traits, as well as discard those that were high yielding, but likely to perform poorly under water 

deficit stress. Genotype No 47 stood out (Figure 1) by all measured traits. 

 

Figure 1. Principal component analysis of wild ecotypes based on leaf growth rate and water deprivation 

tolerance assessed under controlled conditions and mean dry matter over two years of the field 

experiment. 
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Its mean DMY was 215 g, leaf growth 0.11 mm.h−1.◦C−1 and tolerance 3.5 log10 (hPa). For comparison, 

five fastest growing forage genotypes produced DMY of 108 ± 28 g, their mean leaf growth was 0.12 ± 

0.02 mm.h−1.◦C−1 and mean tolerance was 1.4 ± 0.8 log10 (hPa). Therefore, this wild ecotype 

outperformed the best forage genotypes in DMY, exhibited similar leaf growth rate and was more 

tolerant to water deprivation, indicating it can be a valuable parent in the forage breeding programmes. 

Conclusions 

The results of the study confirm that natural ecotypes are not only a source of stress resistance but can 

possess high yielding potential. Though the plants were evaluated under non-stress conditions in the 

field, combining the field and lab test enabled us to identify high yielding and drought-tolerant genotypes. 
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Abstract 

Beef cattle production in Alentejo (Portugal) is based on a mixture of grazing and supplementation. 

Sown biodiverse permanent pastures rich in legumes (SBP) provide quality animal feed, offset 

concentrate consumption and increase carbon sequestration. Providing estimations of biomass in SBP 

is critical for optimizing their use by farmers. We developed data processing and calibration algorithms 

based on remote sensing (RS) and machine learning (ML) to estimate pasture biomass. RS data were 

acquired from Sentinel-2 (S2). Five additional vegetation indices were calculated from the individual 

bands of S2. Calibration data were collected in spring 2018 and 2019 on farms. The ML method used 

was random forest (RF). A multi-group cross-validation approach was used, where each group is a 

unique combination of farm and year; in total 9 groups were considered. We used this approach to 

assess the estimation error when the model is applied to a new farm and year that was not used in 

training. Results demonstrate good predictive capacity, with root mean squared error of 810 kg DM ha-

1 (average biomass equal to 2,499 kg DM ha-1) and an r2 higher than 0.6. This approach can lead to 

expedited and low-cost mapping of biomass in SBP. 

Keywords: pastures, Sentinel-2, random forest, cross-validation 

Introduction 

Portuguese sown biodiverse pasture (SBP) have multiple positive effects that stem from the increase in 

productivity (in comparison with semi-natural pastures) and the higher quantity and quality of animal 

feed (Morais et al., 2018; Teixeira et al., 2018). These pastures are a mixture of up to 20 species or 

varieties of legumes and grasses. The main environmental co-effect of increased productivity in SBP is 

the increase in soil organic matter (SOM) (Teixeira et al., 2011), which translates into carbon storage 

and consequent sequestration from the atmosphere. However, field surveys quantifying these effects 

still rely on field-based/destructive methods that involve cutting the grass in the field to determine yields 

and, for SOM, require laboratory analysis. Those methods are time expensive and require significant 

labour effort (Sinha et al., 2015). In order to avoid these drawbacks, alternative methods have been 

proposed in recent years, namely the use of remote sensing (RS) data. In the last decade, the 

development of space-borne sensors in spatial and temporal resolutions brought forward RS as a 

powerful tool for large-scale monitoring (Ali et al., 2016). In this study, we used Sentinel-2 (S2) 

spaceborne data in combination with the random forest (RF) algorithm for the estimation of standing 

biomass in SBP. A cross-validation was also performed in order to assess more accurately the 

estimation error. 

Materials and methods 

Biomass samples were collected between February and May of 2018 and in February 2019 from six 

farms located in south and central Portugal. In each farm, 24 plots were sampled, but on each collection 

date not all plots were sampled and the number of samples per plot also varied, e.g. in Farm 1, all the 

plots were sampled in April 2018 and only 8 plots were sampled in February and May 2018. In total, for 

soil and biomass, 254 and 242 samples, respectively, were collected. Each collection sample covered 

an area of 0.04 m2. 

S2 data were collected with the most similar date to the date of field collection of samples for calibration, 

and five vegetation indices were calculated (NDVI, NDWI, SR, SAVI and OSAVI). We considered also 

seven additional covariates depicting (i) the weather, through the daily average temperature, 

accumulated precipitation and accumulated radiation since September 1st; and (ii) the terrain, through 

elevation, slope and land morphology (which distinguishes between water accumulation and water 
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runoff areas), and finally an auxiliary variable, the number of days since the beginning of the production 

year, which was assumed to be September 1st of the previous year. 

For RF models, in order to find the hyperparameters that lead to the best performance, we used a 

Bayesian optimization approach. In the Bayesian search, we considered the number of trees (between 

1 and 1000), minimum number of samples per leaf (between 1 and 50), the maximum depth (between 

1 and 100), the error function (mean squared error or mean absolute error), maximum number of 

features/inputs (all inputs, the squared root of the total inputs and the log2 of the total inputs) and the 

use of a bootstrap approach (categorical: yes or no). 

A cross-validation approach was used with 9 groups, where each group is a unique combination of farm 

and year (e.g. “Farm 1-2018” is one group and “Farm 1-2019” is another group). We used this approach 

to assess the estimation error (RMSE) when the model is applied to a new farm and year that was not 

used in training. 

Results and discussion 

Figure 1a presents the boxplot for standing biomass and the nine groups. The average standing biomass 

was 2,499 kg DM ha-1 among all the collected samples (n=242). Standing biomass was similar in both 

production years: 2,402 kg DM/ha in 2018 and 2,583 kg DM ha-1 in 2019. The Farm 2-2019 group had 

the highest average biomass and the Farm 3-2018 had the lowest biomass: 3,286 and 1,746 kg DM ha-

1, respectively. The maximum standing biomass was 8,096 kg DM ha-1 (Farm 1-2018, May) and the 

minimum standing biomass was 238 kg DM/ha (Farm 3-2018, February). The Farm 2-2019 was the 

group with the highest variation between the samples and the group Farm 3-2018 was the one with the 

lowest variation, the interquartile distance being 3,087 kg DM/ha and 767 kg DM ha-1, respectively. 

Figure 1b presents the estimated standing biomass as function of the observed values. In each group, 

the represented estimated values were obtained from the group where the sample of those groups were 

not used to train the model. Estimation error (RMSE) is highly dependent on the group. The average 

RMSE is 810 kg DM ha-1 (r2 is equal to 0.63). RMSE ranges between 510 kg DM ha-1 (Farm 5-2019 – 

represented in light blue in Figure 1b) and 1,325 kg DM ha-1 (Farm 1-2019 – represented in orange in 

Figure 1b). The use of covariates reduced the RMSE of the obtained models by 20% in comparison with 

a model without covariates. 

 

Figure 1. Boxplot and the estimated standing biomass of standing biomass per group (unique 

combination of farm and year)  

Estimation error is higher in the samples with the highest standing biomass. For measured values higher 

than 5,000 kg DM ha-1 the obtained model has a systematic underestimation, namely in the Farm 1-

2018 (dark blue in Figure 1b). Further, Farm 1-2018 is also the second group with highest number of 

samples (40 samples), thus when the samples from this group are not used to train the model, the 

obtained model was unable to estimate high standing biomass values. The obtained model is also 

particularly poor at estimating the standing biomass of Farm 6-2019. 
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Conclusions 

This work shows that standing biomass of SBP can be accurately estimated through the combination of 

RS data and ML models (RMSE: 810 kg DM ha-1; r2: 0.63). We also included seven context variables 

that usually are not taken into account in similar studies, depicting weather and morphology of the 

sampled plots, and showed their relevance in improving the results. Finally, we used a cross-validation 

approach (considering 9 validation groups) in order to have a better error estimation when the trained 

model is applied to a new farm and year. 
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Abstract 

Several methods have been developed to estimate biomass yield in ryegrass using remotely sensed 

spectral and structural features. This study builds further upon procedures developed in the breeding 

programme of ILVO. In previous work, we focused on canopy height as the main predictor of yield. Here 

we investigate whether the prediction of herbage yield in perennial ryegrass can be improved using 

canopy height information combined with spectral bands captured using different sensors. We used six 

breeding trials comprising 115 diploid and 112 tetraploid varieties and populations, with a total of 468 

plots. A series of UAV flights was carried out with two sensors, a 10-band multispectral and an RGB 

camera system. The acquired data were then used to estimate the yield of the first spring cut in May 

2020. Repeated nested cross-validation allowed us to evaluate the performance of the predictive 

models. Three machine learning algorithms (Random Forest, Support Vector Machine and Partial Least 

Squares Regression) were applied, to better understand the applicability of those techniques for 

accurate yield assessments. This study provides new insights to ryegrass biomass estimation related to 

earliness and ploidy level. 

Keywords: Lolium perenne, dry matter yield, RGB, multispectral, pasture, high throughput field 

phenotyping 

Introduction 

State of the art (close) remote sensing technologies can be used to predict and monitor crop yield. In 

recent years there has been a growing interest in the development of UAV-based methods for non-

destructive estimations of herbage yield in grasslands. Several studies have exploited the potential of 

different remotely sensed information, including spectral, structural (Lussem et al. 2019; de Alckmin et 

al., 2020) and textural features (Grüner et al., 2020). This study builds further upon the high throughput 

field phenotyping procedures developed for the perennial ryegrass (Lolium perenne) breeding 

programme of ILVO by Borra-Serrano et al. (2019) and Aper et al. (2019). While in these studies we 

demonstrated that canopy height (CH) is a good predictor of herbage yield, here we examine whether 

the prediction of herbage yield in perennial ryegrass can be improved using CH information combined 

with spectral data derived from different sensors. 

Materials and methods 

A field trial established in May 2019 in Merelbeke (East Flanders, Belgium) was investigated. The trial 

comprises 115 diploid and 112 tetraploid varieties and populations of Lolium perenne, arranged in a 

randomized block design with two replicates. The trial was mown five times in 2020. Here, we focus on 

the spring cut carried out on 4 and 5 May 2020 with a grass plot harvester (Haldrup F-55, Haldrup, 

Denmark). Before the harvest, four consecutive UAV flights were performed (on April 1, April 15, April 

23 and May 4). A UAV (M600, DJI, China) was used in combination with an RGB camera system (α6000, 

Sony Corporation, Japan) and a multispectral camera (Dual Camera System, Micasense, USA). The 

MS sensor includes ten bands: coastal blue 444, blue 475, green 531, green 560, red 650, red 668, red 

edge 705, red edge 717, red edge 740, and NIR 842 nm. RGB images were stitched using Agisoft 

Metashape Professional v1.5.5 (Agisoft, Russia), while multispectral images were processed with Pix4D 

Mapper 4.5.6 (Pix4D, Switzerland). For the processing of RGB images, we followed the workflow 

described in Borra-Serrano et al. (2019). Nine Ground Control Points (GCPs), measured on-site with an 

RTK GPS (Stonex S10 GNSS, Italy), were used for precise georeferencing. Geometrically corrected 

orthophotos, digital elevation models (DEMs) and reflectance maps were generated. As we have 
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demonstrated that inclusion of mean intensity leads to a substantial improvement of yield estimates 

(Aper et al., 2019), the orthophotos were transformed from RGB (red, green, blue) to HIS (hue, intensity, 

saturation) colour space using QGIS 3.12.3 with GRASS 7.8.3. software. For each plot we extracted the 

25th, 50th (median), and 75th percentiles from spectral variables. From the computed RGB based CH 

model the 90th percentile was also included. To model dry matter yield (target variable), five different 

feature combinations were selected. First, we built models with CH variables only. Then, CH data were 

combined with RGB, HIS and multispectral bands, separately. For the next two datasets, only spectral 

information from two different sensors was selected. Models were built separately for diploids and 

tetraploids. We applied three machine learning algorithms, including Random Forest (RF), Support 

Vector Machine (SVM), and Partial Least Squares Regression (PLSR), to predict dry matter yield. Five 

times repeated nested cross-validation (CV), with 10-fold in the outer and 5-fold in the inner CV loop 

was implemented. The outer resampling loop was utilised to estimate the generalisation performance, 

quantified using relative root mean squared error (rRMSE). We applied the mlr package within R v4.0.2 

using RStudio v1.3.1093 (RStudio: IDE for R, R Studio Inc., USA) for statistical modelling. 

Results and discussion 

The highest production of forage biomass is realised during the spring cut of perennial ryegrass. In this 

experiment the total dry matter yield varied between 2.3 and 6.5 Mg ha-1 for diploids and between 3.6 

and 7.6 Mg ha-1 for tetraploids. Thus, on average tetraploids produced more biomass than diploids. 

Preliminary analysis of the model performance estimates (Figure 1) show that for diploids the CH 

information already resulted in a low rRMSE compared to using or combining these data with spectral 

information (lowest mean rRMSE = 10.4%). For tetraploids using or adding spectral information to the 

CH data slightly improved model performance compared to dataset with CH data only (lowest mean 

rRMSE = 9.1%). No clear advantage of one machine learning algorithm over another was identified, 

when applied to the same dataset. 

 

Figure 1. Box plot representing a distribution of model performance estimates (rRMSE), fitted by three 

different machine learning algorithms: PLSR, RF, and SVM. Dry matter yield (DMY) was set as a target 

variable, while (A) CH data; (B) CH combined with multispectral bands; (C) CH combined with RGB and 

HIS data; (D) multispectral bands; and (E) RGB and HIS data were set as predictor variables. 

The findings of this study suggest that canopy height variables are a better predictor of herbage yield in 

diploids than in tetraploids, at least in the first cut of the year. A possible explanation might come from 

the growth characteristics of tetraploids. In a relatively high proportion of the tetraploid plots, 'bending' 

of the leaves was observed, what might have distorted canopy height measurements. The 'bending' 

plots showed a higher intensity and a lower saturation compared to diploid plots. Therefore, lower 

rRMSE could be reached for tetraploids including HIS colour space channels to the model (dataset E). 

Conclusions 

In this investigation, the aim was to analyse the potential of using data acquired simultaneously using 

two different sensors for the herbage yield assessment. Biomass predictions of perennial ryegrass could 

be improved by combining CH information with spectral data. However, the improvement is more 

pronounced for tetraploids than for diploids. While previous studies generated variation in grass swards 

by different nitrogen fertilizer levels (de Alckmin et al., 2020; Lussem et al., 2019), in this study we 

focused on populations capturing a broad genetic and phenotypic variation. In the next phases of our 

research, we plan to incorporate the data obtained from other cuts and flight campaigns. 
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Abstract 

Indices based on optical satellite remote sensing imagery have shown to be suitable for quantifying 

drought-related yield losses. The Forage-Production-Index (FPI), combining meteorological 

observations and remote sensing-based LAI retrievals from MODIS, was adapted for the application in 

South Tyrol (NE Italy) in a mountainous, highly heterogeneous landscape. Yield measurements from 

field trials covering 39 environments (site x year) were used for validation, which was performed using 

mixed models describing the relationship between dry matter yield and FPI (or their variation with 

respect to a reference period) and accounting for the design effects treated as random factors. Following 

variants in computing FPI were applied: spectral unmixing of LAI, correction by means of Water Stress 

Coefficient (CWS) and aggregation scale. The prediction ability of the index was found to be low. 

Unmixing and correction by CWS resulted in a minor improvement in accuracy. Possible reasons for the 

low sensitivity are: i) insufficient spatial resolution of MODIS satellite data with respect to the complexity 

of land use; ii) lack of coincidence between yield at validation sites and surrounding grassland; iii) small 

number of validation sites, possibly not covering the whole yield variation over the area and period 

investigated. 

Keywords: MODIS, LAI, mountain environment, forage yield, parametric insurance, drought 

Introduction 

According to the Rural Development Program of the European Commission (EC), it is no longer possible 

to compensate crop losses with public funds. To financially compensate for the damage suffered from 

extreme weather events, parametric insurance policies, or mutual funds, are a viable option to increase 

the economic sustainability of farms. This article presents preliminary results with challenges and 

lessons learned from implementing a drought index to identify grassland yield anomalies through 

satellite measurements and meteorological data, following the EC requirements. The strategy adopted 

was to adapt an existing index to the specific requirements of a mountainous area and to perform its 

calibration and validation based on time-series of yield measurements in the study area of South Tyrol 

in North-East Italy. Land use in the area is characterised by small-scale grassland-based farms and a 

topographically complex mountain environment. 

Materials and methods 

For the mapping of grassland yield losses, the Forage-Production-Index (FPI) was selected. This index 

was developed by Roumiguié et al. (2015, 2017) for application in an agricultural insurance context and 

is currently used for insurance policies in France. The index relies on the estimation of biomass 

anomalies, based on remotely sensed Leaf-Area-Index (LAI), combined with the so-called Water-Stress-

Coefficient (CWS), based on precipitation and reference evapotranspiration (ET0). The estimation of LAI 

relied on data from the MODIS satellite mission. The following steps were applied: i) download of the 

MODIS products MOD/MYD09GQ-LG2 (red and near-infrared at 250 m spatial resolution) and 

MOD/MYD09GA-LG2 (blue and shortwave-infrared at 500 m);ii) MODIS pre-processing (acquisition 

geometry correction, 4-day temporal compositing, masking of clouds, shadows, and other low-quality 

acquisition); iii) spectral un-mixing; iv) retrieval of the LAI based on the inversion of the PROSAIL 

radiative transfer model (Jacquemoud et al., 2009); and v) daily interpolation of LAI. The calculation of 

the daily CWS relied on interpolated meteorological station measurements and downscaled Meteosat 

solar radiation maps. The anomalies (FPI) were defined as the ratio between FPIn and the Olympic 

average over the previous 5 years or over all available observation years (REF: oa = Olympic average; 

wp = whole observation period). For the sites with three observation years only, the average of three 
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years was used instead of the Olympic average. The FPI was evaluated considering the effect of the 

following processing steps: spectral unmixing of LAI in case of mixed pixels (SU: no = mixed; yes = 

unmixed), correction using CWS (CWSC: yes/no), and spatial aggregation scale (SAS: cc = pixel 

including the field trial used for validation, avg = mean of all pixels surrounding cc). Dry matter yield 

measurements (at 5 cm stubble height) from multiyear (3 to 13 years between 2004 and 2017) field 

trials on non-irrigated grasslands (5 experiments, years x sites = 39 environments) investigating different 

cutting frequencies combined with specific fertilisation inputs and three true replicates (16 m²-plots) per 

treatment were used as a reference. The predictive accuracy of FPI and ΔFPI was investigated with 

respect to forage yield and percent yield variation with reference to the same period used to compute 

ΔFPI, respectively. FPI was computed for all possible combinations of SU, CWSC, SAS and two different 

resolutions of yield data (RYD: tr = mean across treatments per site and year; pl = single plots) were 

analysed. Validation was performed using mixed models investigating the relationship between the 

respective vegetation index and annual yield. Site and design effects were treated as random effects. 

Where appropriate, the serial correlation of measurements on the same plot/site in different years was 

treated as repeated measurements with the plot/site as a subject. For FPI validation, only yield data 

obtained at the site-specific cut frequency were considered, whilst all investigated management 

intensities were included in the ΔFPI analysis. The squared correlation between observed and predicted 

values (R²) was used to assess the prediction accuracy of each model. 

Results and discussion 

R² values between 0.322 and 0.423 were obtained for the relationship between FPI and yield. For six of 

the 18 models, the P-value of FPI exceeded 0.05 and/or the 95% confidence interval of the slope 

included zero. Prediction accuracy seemed to be less affected by RYD (Figure 1a). Similarly, no 

apparent role was played by SAS, whilst SU and CWSC resulted in a mean R² increase of 0.03 (not 

significant) and 0.05, respectively. Much lower R² values were found for the relationship between ΔFPI 

and the percent yield variation (between 0.002 and 0.218). The same pattern already observed for the 

FPI-based models was found (Figure 1b) with SU and CWSC doubling accuracy (from 0.054 to 0.108 

for SU and from 0.058 to 0.102 for CWSC). 

 

Figure 1. Comparison of prediction accuracy due to RYD, SAS, SU and CWSC for a) FPI and b) ΔFPI. 

Means across all factors ± standard errors are shown. The values are averages of 8 models for FPI and 

of 16 models for ΔFPI. Significant differences at P<0.05 by a t-test are flagged by an asterisk. RYD = 

resolution of the yield data (tr = mean across treatments per site and year; pl = single plots); SAS = 

spatial aggregation scale (cc = pixel including the field trial used for validation, avg = mean of all pixels 

surrounding cc); SU = spectral unmixing of LAI; CWSC = correction by means of CWS; REF = reference 

period (oa = Olympic average; wp = whole observation period). 

Using the Olympic average also resulted in more than doubled R²-values compared to using the whole 

observation period (0.119 vs 0.045). Possible sources of error explaining the low accuracy in 

comparison to previous research (Roumiguié et al., 2017) are expected to be i) the insufficient spatial 

resolution of MODIS satellite data with respect to the complexity of land use (small-scale field structure, 

non-grassland land cover – only approximately 10% of MODIS pixels containing grassland can be 

considered pure – as well as noise due to heterogenous agronomic management) and the discrepancies 

between the cartographic support used to differentiate land use within each pixel (relevant for SU); ii) 

a)
b)a)

* * * *
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the high heterogeneity of the areas surrounding the experimental sites, which causes the experimental 

data not to describe the yield of the surrounding grassland areas correctly; iii) the small number of 

validation sites, which probably do not cover the whole yield variation within the area and period 

investigated. 

Conclusions 

The prediction accuracy of FPI on forage yield was found to be modest, whilst that of ΔFPI on percent 

yield variation (even if significant and with a slope >0) seems to be unsuitable for the implementation of 

an insurance system in the given context. Significant advances are expected soon due to the high-

resolution data from the COPERNICUS programme, increasing the spatial representativeness of 

satellite-based LAI in heterogeneous regions. The collection of yield data matching the scale of remote 

sensing data and at a larger number of sites is expected to improve the reliability of the validation results. 
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Abstract 

This study develops the validation of the four best promising models resulting from a workflow 

processing Sentinel-1, Sentinel-2 and meteorological data through 13 different machine learning 

algorithms that led to 124 models predicting biomass under the form of compressed sward height on 

square sub-samples of paddocks (i.e., pixel-based estimation with a resolution of 10 m). The training 

and validation data were acquired in 2018 and 2019 in the Walloon Region of Belgium with a rising 

platemeter equipped with a GPS. The cubist, perceptron, random forest and general linear models had 

a validation root mean square error (RMSE) around 20 mm of CSH. However, the information relevant 

for the farmer and for integration in a decision support system is the amount of biomass available on the 

whole pasture. Therefore, those models were also validated at a paddock-scale using data from another 

farm (117 CSH records acquired with a different rising platemeter) based on input variables expressed 

at paddock scale or predictions aggregated at paddock scale. The resulting RMSE were higher than 

before. To improve the quality of prediction, a combination of the outputs of the models might be needed. 

Keywords: compressed sward height, pasture, remote sensing, prediction, Sentinel, machine learning 

Introduction 

Advantages of grazing in agroecosystems are well recognized: lower feeding cost (Hennessy et al., 

2020), higher animal welfare and increased milk quality (Elgersma, 2015). However, intensive dairy 

farmers turn away from grazing (Lessire et al., 2019). One of the main reasons is the need for a frequent 

assessment of the available standing biomass. Decision support systems (DSS) were developed 

previously on the basis of mechanistic models (e.g. Romera et al., 2010 and Ruelle et al., 2018) to 

address this issue. Another approach to develop such DSS is the use of remote sensing. Recently, we 

described a framework to develop machine learning (ML) models using Sentinel-1 (S-1), Sentinel-2 (S-

2) and meteorological (met) data to predict biomass under the form of compressed sward height (CSH) 

(Nickmilder et al., 2021). Its application to data acquired over three farming areas located in Wallonia 

(southern Belgium) led to the choice of 4 promising models: a cubist, a generalized linear model with 

elastic regularization of the gaussian family (glmnet) and a random forest (rf) using 160 variables (26 

met, 10 S1 and 124 S2) and a neural network (nnet) using 47 variables (9 met and 38 S-2). An analysis 

of the performances of these four models on an independent dataset is performed and presented here. 

Material and methods 

The 117 validation CSH data were acquired with a Jenquip EC-01 in Eastern Wallonia on a weekly basis 

from May 2019 to October 2019 during farm walks on land parcels covering an area between 1.9 ha 

and 5.9 ha (Delhalle and Knoden, 2019). Some constraints decreased the amount of validation data: 

given that the four models integrated S-2, S-1 and met data, 28 records out of the 117 were discarded 

due to the presence of clouds making S-2 data unusable. Similarly to findings in our previous article, the 

predictions were either made on all the data aggregated at the parcel-level or on the data resampled on 

subplots with 10 m resolution and these predictions were aggregated at the parcel-level. The analysis 

of the prediction consisted in the analysis of the root mean squre error (RMSE), the residual prediction 

deviation (RPD), the shape of the distribution of the predictions and of the residuals (equal to the actual 

value minus the predicted) and the over-/under-estimation of CSH available at the parcel level. 
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Results and discussion 

The RPD are quite similar to the one achieved before (Table 1). 

Table 1. Residual prediction deviation (RPD) of validation of the four models applied at the parcel 

(RPD_Parcel) or at the subparcel level (RPD_SubParcel). 

model RPD_Parcel RPD_SubParcel 

cubist 0.79 0.81 

glmnet 0.00 0.00 

nnet 0.89 0.89 

rf 0.94 0.93 

The 0 RPD value for the glmnet model is due to a failure in predicting finite and believable value for 

some observations. Beside that, the RPD are similar to the one achieved in the study developing the 

models, the value of the residuals seems to increase with a rise of the original CSH, no matter which 

way the predictions were made (Figure 1). This effect is faint due to the low number of extreme values 

in the dataset. This, together with the distribution of the predicted values confirm the grouping effect of 

the prediction constated in the original study. It might be due to a higher percentage of values between 

50 and 100 mm of CSH in the training datasets. Although predictions were grouped for all models, the 

predictions were different between the models (the correlation with the actual CSH for the cubist model 

was 0.20, for the glmnet -0.08, for the nnet 0.39 and for the rf 0.63). 

 

Figure 1. Representation of the residuals VS the original compressed sward height (CSH) dataset for 

both the validation made at the parcel (left) or at the subparcel level (right). 

To obtain more correct predictions, we could change the training dataset with a more equal sampling or 

keep our current models and add a new ML layer that uses the predictions of the most promising models 

as input to predict the biomass at the parcel scale. The maximum correlation between the predictions 

of two models is between the cubist and the rf and is 0.73. This difference means that they read different 

parts of the signal and this validates the new ML layer approach. Another key argument is the value of 

the adjusted R-squared (R²=0.49) for the linear regression predicting the actual CSH on the basis of the 

4 model predictions. Moreover, it could help in training the final model with more datasets that were 

recorded without an accurate positioning system. 
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Conclusion and outlook 

The 4 models developed and selected previously to predict biomass did not show good performances 

once applied to data acquired at the parcel level with a different RPM used on a different validation farm. 

The difference in behaviour of the predictions and residuals indicates that there might be a way to 

improve the parcel-scale biomass estimation by adding a new ML layer which would be calibrated on 

paddock-scale data. 
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Abstract 

Pasture management on rural and extensive small-structured dairy farms in southwest Germany is 

based mainly on visual estimations or traditional management strategies. To maintain and optimize 

grassland management for pasture use, continuously measured data over the full vegetation period are 

crucial. However, the measurement of pasture characteristics can be time-consuming and challenging; 

therefore there is a considerable potential to use sensor-based technologies. In the present study, the 

potential of using a semi-automated rising plate meter to measure sward height data from pastures on 

four dairy farms in the Black Forest region was assessed. In addition, above-ground biomass based on 

grass cuts of pastures were compared to estimations of available biomass from the rising plate meter. 

The data revealed that pastures were overgrazed during late summer and autumn, with sward heights 

below 2 cm on three of four farms and the availability of pasture biomass decreased from 262 to 95 kg 

DM ha-1 in autumn. The estimations from the rising plate meter constantly overestimated the available 

biomass on pasture, except for measurements in late summer. We conclude that the application 

potential of the rising plate meter at its current state might be limited and needs further adaptation for 

use with heterogenous short-grass swards. 

Keywords: sward height, automated measurement, pasture management, Kurzrasenweide, organic 

milk production, grass-based nutrition 

Introduction 

Pasture access is a central element in extensive small-structured organic dairy farms. Grazing is a 

substantial component of the diet of many organic dairy cows in the Black Forest region in the South of 

Germany. Various pasture management strategies are used in the region, with short-grass grazing being 

very prevalent. The short-grass grazing aims to keep the sward very short by adjusting stocking 

densities to forage growth rates, and thereby to enhance plant regrowth and maintain a high-quality 

sward (Häusler et al., 2006). However, evaluation of forage availability on pastures in southwest 

Germany is usually based on visual assessments, which are subjective and challenging. Consequently, 

the development of automated sensors to estimate sward height has advanced towards applicable 

sensor systems. In the present study, the Grasshopper system, already validated and calibrated on 

temperate permanent grasslands (French et al., 2015), was used on four commercial organic farms in 

southwest Germany to assess the sward height over a full vegetation period. Estimations of available 

biomass using the rising plate meter, based on calibrations for homogenous swards, were compared to 

above-ground biomass grass cuts of heterogenous pastures of permanent grasslands. 

Materials and methods 

Data were collected during the vegetation period of 2020 on four commercial organic dairy farms in the 

Black Forest region around Titisee-Neustadt, Germany. The farms are located at 940 m a.s.l. on 

average. The pastures are permanent grassland dominated by perennial ryegrass (Lolium perenne L.) 

and white clover (Trifolium repens L.) with diverse herbs. The vegetation period was divided into five 

sub-periods (SP), namely, SP1 (May 29 – June 1), SP2 (June 27 – July 1), SP3 (July 27 – August 19), 

SP4 (September 9 – September 30), and SP5 (October 27 – October 28). During each SP, the above-

ground biomass was harvested within a 0.5 m x 2 m rectangular quadrat placed randomly on the 

pastures. At each sampling point on the pastures, the sward within the quadrat was cut to about 1 cm 

above the ground using an electric grass cutter (Makita DUM604ZX, Germany) and the fresh weight 

recorded. The harvested material was then dried in a forced-air oven at 105°C for 16 h to estimate its 

dry matter content. 
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In addition, measurements of compressed sward height (CSH) were conducted using the Grasshopper 

system (TrueNorth Technology, Ireland). The system comprises a rising plate meter, which assesses 

the CSH when the plate falls freely onto the vegetation, and the height of the plate on the pole is recorded 

via ultrasonic measurements. Five measurement points were taken for each sampling point and the 

mean of all points per sample will be reported. Negative sward height values were removed. In total, n 

= 153 valid samples with sward height measurements and grass cuts were taken across the five periods 

and four farms. The grasshopper system uses the measured CSH to estimate the available biomass 

based on calibrations made for homogenous swards. In this study, the residual height and dry matter 

content within the calibration formula of the Grasshopper system was set to 1 cm and 25% dry matter 

content, respectively. 

Results and discussion 

Comparing the mean CSH values of all farms in the outlined periods, there was always a higher CSH 

value for Farm 4 detected, in comparison to the other three farms. This could give an indication of a 

different or less efficient pasture management. The recommended sward height, which should be 

maintained within a short-grass grazing pasture management, is 4-6 cm compressed sward height 

(Häusler et al., 2006). On the grazed pastures of the four farms, the targeted sward height was achieved 

during SP1 and during SP2 (Table 1). However, the CSH in the following periods might have been too 

low to maintain a high-quality pasture for grazing dairy cows, as a minimum of 3.5 cm as post-grazing 

sward height is recommended for pastures of dairy cows (Kennedy et al., 2009). Frequent sward height 

measurements would thus offer the possibility to react faster to overstocking or understocking of 

pastures. 

Table 1. Mean compressed sward height (CSH, mm) measured with the Grasshopper system, available 

biomass based on grass cuts (GC, kg DM ha-1), estimated biomass with the Grasshopper system (GH, 

kg DM ha-1) across all pastures of four farms in the Black Forest, Germany, in the vegetation period of 

2020. 

With regards to the comparison of the estimated biomass by the Grasshopper system to the available 

biomass as based on the measured pasture cuts, there was an overestimation by the Grasshopper on 

all farms in all periods, except during SP4 and SP5 and for Farm 4 (Table 1). Towards the end of the 

vegetation period there is a decline in biomass and also in the compressed sward height. Therefore, 

this might display a limitation of the rising plate meter, as it is not reporting the actual biomass on very 

short-grass swards. On Farm 3, there were more invalid values for sward height towards the end of the 

vegetation period, with lower sward height reported. This may be linked to the low amount of biomass. 

Similar to studies of Murphy et al. (2020) and Hart et al. (2020), there might be a strong effect of the 

botanical composition of the pastures. This will be further analysed in future work. 

Conclusions 

The results demonstrate the importance of a continuous measurement of the pasture vegetation to 

optimize pasture management as there is a high risk of overgrazing especially towards the end of the 

vegetation period. Automated measurement systems, such as the rising plate meter Grasshopper, 

Sampling period Farm 1 Farm 2 Farm 3 Farm 4 

 CSH GC GH CSH GC GH CSH GC GH CSH GC GH 

1 40.3 167 481 38.0 190 391 42.3 181 463 98.1 715 2467 

2 38.4 340 370 37.1 85 381 34.7 47 304 79.8 388 1805 

3 21.4 60 99 26.0 81 150 NA NA NA 66.7 443 1270 

4 18.7 448 102 12.3 170 36 7.1 145 6 30.1 161 282 

5 12.0 62 26 12.7 56 31 NA NA NA 34.2 156 337 
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enables continuous monitoring and information-based adjustment of stocking densities and pasture 

access throughout the grazing season. However, at the moment there is still a limitation of the 

Grasshopper system in measuring available biomass accurately, especially if there is only a small 

amount of biomass available. Therefore, the calibrations need to be adapted to short-grass, 

heterogenous swards. 
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Abstract 

Production rates and global consumption of synthetic polymers have grown exponentially in recent 

years. Associated with environmental problems such as mismanaged plastic debris, inefficient water 

treatment plants or anthropogenic littering behaviour, this increase has resulted in a vast amount of all-

size plastic entering the environment. Due to its subsequent resistance to degradation, plastics are 

persisting in the environment and can potentially influence environmental processes. Primarily 

microplastics (< 5 mm) are central to the debate. So far, aquatic systems have been in the focus of 

concern. Our knowledge on microplastics in terrestrial ecosystems, especially agricultural soils and 

crops, is very limited. Lab experiments have shown depression in germination of grassland plants, 

possibly due to changes in water availability. Therefore, the aim of this research was to investigate the 

influence of different sizes of microplastics simulated by Polyvinylchloride on the leaf surface 

temperatures of Lolium perenne in an outdoor pot experiment. The leaf temperature is a proxy for 

transpirational cooling and thus water availability. An infrared image of the plants was taken weekly, 

using a high definition thermographic camera. We partially observed higher leaf surface temperatures 

for plants with different-sized microplastics. The temperatures were significantly higher for plants without 

fertilizer treatment. 

Keywords: microplastics, infrared imaging, leaf temperatures, transpirational cooling 

Introduction 

Microplastics (MP) in terrestrial ecosystems have just recently started to gain societal and scientific 

interest, due to the ubiquity of MP that has been found worldwide. MP can enter soils via aeolian 

transport or rain (Bergmann et al., 2019) as well as by commonly used agronomic practices like use of 

plastic mulch films (Li et al., 2020) or application of sewage sludge and biowaste (Weithmann et al., 

2018). Recent studies have reported various effects of MP acting as a stressor for soil organisms and 

plants (Bosker et al., 2019; Huerta Lwanga et al., 2017). As microplastic research concerning the soil-

plant system and plant development is just emerging, there is a lack in quantity and quality of 

comparable analytical methods (Qi et al., 2020). In previous experiments, we observed depressions in 

germination and general plant performance for plants exposed to MP. Beside this, enrichments in 

isotopic signatures (13C) were observed, indicating a potential disturbance in water balance of 

ryegrass. The focus of this experiment was therefore to study potential drought stress of plants caused 

by MP. We used thermographic measurements of leaf surface temperatures as a proxy of transpirational 

cooling and thus water availability. We hypothesized that MP would reduce water availability and thus 

increase plant leaf temperatures. 

Material and methods 

We used perennial ryegrass (Lolium perenne) cv. Trivos (Deutsche Saatveredelung, Lippstadt, 

Germany) as a model species and Polyvinylchloride (PVC) to simulate MP in three different size ranges: 

powder: < 0.25 mm (Werthmetall, Erfurt, Germany); pellets: ~ 5 mm (Veka AG, Sendenhorst, Germany) 

and grist: ~ 7 -10 mm (Veka AG, Sendenhorst, Germany). An amount of 30 g was surface-applied per 

pot filled with 3 kg of local soil and approx. 250 seeds were sown at the end of June 2020. Fertilizer 

treatment (NPK-fertilizer) was an additional factor that was applied once (2 g) to half of the pots. We 

used 16 replicates per PVC and fertilizer treatment and additional control (n=8) containing only plastics 

and soil (N=136). Thermographic images of the plants were recorded weekly (n=5) in absence of direct 

sunlight, rain or wind using the high definition infrared camera VarioCam HD (Infratec GmbH, Dresden, 

Germany) starting seven weeks after sowing. For analysis, 25 temperature measurement points were 

manually set on the leaf surfaces of the plants. A mean temperature per pot was calculated from these 
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temperature points. Images were analysed using IRBIS Plus 3.1, Microsoft Excel and R Studio for 

graphics and ANOVA. 

Results and discussion 

For most of the measurement dates, leaf surface temperatures were higher for treatments without 

fertilizer. At two dates of measurement, leaf surface temperatures were slightly higher for treatment with 

larger MP (macro) (Table 1). 

Table 1. Leaf temperatures of perennial ryegrass measured with infrared thermography. Mean values 

and standard errors are shown for the single treatments (fertilized and unfertilized) with MPs 

(microplastics): control; macro (~ 7-10 mm); micro_a (< 0.25 mm); micro_b (~ 5 mm) for each date of 

measurement. 

One date (3 September) of thermal imaging is shown graphically here; on that day, the images were 

taken at 5:30 PM with an average air temperature of 20°C. No significant effect of MP on the leaf surface 

temperatures of Lolium perenne was detectable for this date. However, leaf temperatures were 

significantly warmer in plants without fertilizer treatment (Figure 1). 

 

Figure 1. Mean values of leaf temperatures on 3 September 2020 (5:30 pm, 20°C air temperature) in °C 

presented in boxplots over the different groups of MPs (microplastics): control treatment, macro (~ 7-10 

mm), micro_a (< 0.25 mm) and micro_b (~ 5 mm) for two fertilizer treatments (No fertilizer and NPK-

fertilization). 

Date Control macro micro_a micro_b 

fertilized unfertilized fertilized unfertilized fertilized unfertilized fertilized unfertilized 

21.08.20 21.85 ± 
0.32 

22.40 ± 
0.49 

24.53 ± 
0.28 

25.08 ± 
0.52 

22.92 ± 
0.37 

22.92 ± 
0.94 

24.27 ± 
0.29 

24.88 ± 
0.32 

30.08.20 17.29 ± 
1.03 

17.82 ± 
0.66 

17.24 ± 
1.15 

17.50 ± 
0.99 

17.38 ± 
1.09 

17.72 ± 
0.79 

17.25 ± 
1.00 

17.72 ± 
0.67 

03.09.20 17.57 ± 
0.43 

18.07 ± 
0.45 

17.61 ± 
0.50 

18.16 ± 
0.49 

17.58 ± 
0.44 

18.11 ± 
0.38 

17.50 ± 
0.45 

18.14 ± 
0.41 

08.09.20 19.92 ± 
0.72 

19.99 ± 
0.35 

20.14 ± 
0.69 

19.95 ± 
0.35 

19.93 ± 
0.75 

19.93 ± 
0.51 

19.91 ± 
0.82 

20.18 ± 
0.65 

16.09.20 17.73 ± 
0.32 

17.98 ± 
0.28 

17.78 ± 
0.33 

19.93 ± 
0.29 

17.90 ± 
0.44 

18.00 ± 
0.44 

17.74 ± 
0.34 

17.97 ± 
0.25 
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This may be a result of reduced biomass in unfertilized plants, allowing the soil to emit more radiation 

detectable by the camera. As visible (Figure 1), leaf temperatures of plants exposed to MP were higher 

than the control treatment, but not in the group of fertilized plants with MP micro_b. Besides this, no 

clear effect of MP on leaf temperatures could be observed. As weather conditions were similar but rarely 

identical for dates of measurements, overall results were hard to compare. Therefore, an additional 

indoor experiment with younger plants of perennial ryegrass was conducted in autumn 2020 to minimize 

effects of the external circumstances. As we expect MP to have most influence during the initial stage 

of plant development, we hypothesize clearer results in younger plants. These results are currently being 

processed. 

Conclusions 

No significant effect of MP differing in size could be observed for the selected date using infrared 

imaging. There was a trend towards higher temperatures for plants growing in soil with addition of MP. 

As our results may as well be partly a result of unsteady outdoor conditions, infrared imaging of plants 

may still be a promising procedure to more precisely understand the detailed effects of MP on plants. 

References 

Bergmann M., Mützel S., Primpke P., Tekman M. B., Trachsel J., Gerdts G. (2019) White and wonderful? 

Microplastics prevail in snow from the Alps to the Arctic. Science Advances, 5(8). 

Bosker T., Bouwman L. J., Brun N. R., Behrens P., Vijver M. G. (2019) Microplastics accumulate on pores in seed 

capsule and delay germination and root growth of the terrestrial vascular plant Lepidium sativum. 

Chemosphere, 226, 774–781. 

Huerta Lwanga E., Gertsen H., Gooren H., Peters P., Salánki T., van der Ploeg M., Besseling E., Koelmans A. A., 

Geissen V. (2017) Incorporation of microplastics from litter into burrows of Lumbricus terrestris. 

Environmental Pollution, 220, 523–531.  

Li Z., Li Q., Li R., Zhao Y., Geng J., Wang G. (2020) Physiological responses of lettuce (Lactuca sativa L.) to 

microplastic pollution. Environmental Science and Pollution Research International, 27(24), 30306–30314.  

Qi Y., Ossowicki A., Yang X., Huerta Lwanga E., Dini-Andreote F., Geissen V., Garbeva P. (2020) Effects of plastic 

mulch film residues on wheat rhizosphere and soil properties. Journal of Hazardous Materials, 387, 121711. 

Weithmann N., Möller J. N., Löder M. G. J., Piehl S., Laforsch C., Freitag R. (2018) Organic fertilizer as a vehicle 

for the entry of microplastic into the environment. Science Advances, 4(4), eaap8060.  

  



 
Grassland Science in Europe, Vol. 26 – Sensing – New Insights into Grassland Science and Practice 104 

 

The potential of unmanned aerial vehicle (UAV)-based multispectral data 

to estimate fresh grass allowance 

Klootwijk C. W.1, de Boer I. J. M.2, van den Pol-van Dasselaar A.3, Holshof G.1, Fraval S.4 and van 

Middelaar C. E.2 

1Wageningen Livestock Research, Wageningen University & Research, PO Box 338, 6700 AH 

Wageningen, the Netherlands; 2Animal Production Systems group, Wageningen University & Research, 

PO Box 338, 6700 AH Wageningen, the Netherlands; 3Aeres University of Applied Sciences, De 

Drieslag 4, 8251 JZ Dronten, the Netherlands; 4Global Academy of Agriculture and Food Security, 

University of Edinburgh, Bush Farm Road, EH25 9RG Edinburgh, UK 

Abstract 

Accurate estimates of fresh grass allowance are central to improve the economic and environmental 

performance of pasture-based dairy farms. To accurately quantify fresh grass allowance, the total 

available herbage mass (HM) needs to be corrected for the occurrence of rejected patches (RP) that 

are formed due to selective grazing. The aim of this study was to explore whether multispectral images 

can be used to correct fresh grass allowance for selective grazing. To do so, we performed 

measurements in a grazing experiment. We used an unmanned aerial vehicle (UAV) mounted with a 

full colour and multispectral camera to record visible (red, green, blue) and near-infrared (NIR) 

wavelengths. We estimated HM using the Normalised Difference Vegetation Index (NDVI). We found a 

quadratic relationship between grass height (as a proxy for HM) and NDVI, which was influenced by 

date of measurement and grazing interval (P<0.001; RMSEP = 10.2%; R2 = 0.78). We were able to 

identify RP by estimating threshold values in NDVI using visual interpretation of full colour images. Our 

results provide first indications that NDVI could be used to quantify fresh grass allowance for grazing. 

Further research will be required in order to develop a remote sensing method for accurate fresh grass 

allowance estimation under different grazing management practices.  

Keywords: multispectral analysis, NDVI, herbage mass, grazing management, dairy cows 

Introduction 

The economic and environmental sustainability of pasture-based dairy farms is largely driven by 

grassland utilization (Shalloo et al., 2018). To improve grassland utilisation it is necessary to accurately 

quantify fresh grass allowance. Fresh grass allowance is the amount of pasture offered to the cow in kg 

dry matter (DM) per cow per grazing day. To accurately calculate fresh grass allowance, we should 

correct total herbage mass (HM) for the occurrence of rejected patches (RP) that are formed due to 

selective grazing (Klootwijk et al., 2019). 

The rapid advances in remote sensing technology create new opportunities for automated monitoring 

of HM, for example via multispectral images. Although widely adopted in arable production, the use of 

multispectral images is still in its infancy in grass-based dairy farming systems (Shalloo et al., 2018). 

The effect of grazing on the relationship between vegetation indices and HM is yet to be discovered 

(Moeckel et al., 2017). The aim of this study, therefore, was to explore whether multispectral images 

can be used to correct fresh grass allowance for selective grazing. 

Materials and methods 

The grazing experiment was performed at the Dairy Campus research facility in Leeuwarden (NL) during 

the grazing season of 2017. Sixty dairy cows were allocated to two grazing systems, i.e. compartmented 

continuous grazing (CCG) and strip-grazing (SG), in duplicate. Both CCG and SG are rotational grazing 

systems in which the cows receive a new grazing area daily. These systems, however, largely differ in 

key grazing characteristics, such as pre- and post-grazing heights and period of regrowth (Klootwijk et 

al., 2019). In total we used 8 ha of grassland for day grazing with a fixed stocking rate of 7.5 cows ha-1 

of grazing area. 

Grass height was quantified using a rising plate meter (RPM), where a W-shape was traversed in each 

compartment. The RPM is a non-invasive and internationally adopted method to quantify grass height 
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as a proxy for HM. Remotely sensed images were taken using an unmanned aerial vehicle (UAV) (eBee 

Ag) mounted with a full colour and multispectral camera (multiSPEC 4C) to record visible (red, green, 

blue) and near-infrared (NIR) wavelengths (flying height 120 m; image overlap 70%; ground sampling 

distance maximum 11.5 cm/px). These grass height recordings and remotely sensed images were taken 

on three days over the course of July and August. The remotely sensed images were used to calculate 

the Normalised Difference Vegetation Index (NDVI), using the red and NIR wavelengths. We used the 

zonal statistics software in the QGIS geo-algorithm toolbox (version 2.18.2) to calculate the average 

NDVI per field. The fields in the drone images were identified using latitude and longitude measurements 

of all field corner points taken with a Global Positioning Systems (GPS) device (Garmin GPSMAP 64S). 

To understand the relationship between grass height measurements and NDVI recordings, we defined 

a regression model with grass height (averaged over the compartment) being the dependent variable, 

and NDVI, grazing interval, grazing system, measurement date, and fields being the explanatory 

variables. Since the literature shows a non-linear relationship between ground measurements of HM 

and multispectral reflectance (Hoving et al., 2018; Lussem et al., 2018), we introduced NDVI also as a 

quadratic term in the regression analysis. Using visual interpretation of full colour images, we set a 

minimum NDVI for RPs as a threshold value to create binary raster layers, categorizing RP and non-RP 

pixels for each field. First, we used these raster layers to calculate the percentage of grassland covered 

with RP. Subsequently, we used these raster layers to calculate the average NDVI of the non-RP, 

representing the fresh grass allowance per field. 

Results and discussion 

Regression analysis showed that the quadratic relationship between grass height and NDVI is 

influenced by the date of measurement (P < 0.001). This is in line with the literature showing that the 

relationship between HM and NDVI is influenced by growing season (Hoving et al., 2018). In addition, 

we found an expected relationship between grazing interval (i.e., period of regrowth) and grass height 

(P < 0.001). The regression analysis resulted in a mean squared error of prediction (RMSEP) of 9 mm 

(10.2%) (R2 = 0.78). 

The yellow lines in Figure 1 represent the outline of compartments in which the green colour clearly 

represents RP. For CCG, NDVI values with RP ranged from 0.84 to 0.93, with an average of 0.89, 

whereas NDVI values without RP ranged from 0.82 to 0.92, with an average of 0.88. This reduction in 

average NDVI value of 0.01 seems rather small, but equals 11% of the range in NDVI with RP (0.09). 

For SG, NDVI with RP ranged from 0.67 to 0.90, with an average of 0.82, whereas NDVI without RP 

ranged from 0.67 to 0.90, with an average of 0.80. This reduction in average NDVI values also equals 

11% of the range in NDVI with RP. 

 

Figure 1. A full colour image of the different compartments in the grazing experiment. 
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The difference between NDVI with and without RP decreased with an increasing amount of days since 

grazing, which is expected since the detection of RP becomes more difficult when grass height of RP 

and non-RP increases. 

Conclusions 

We showed the potential of a relatively easy method to correct fresh grass allowance for selective 

grazing based on multispectral images. Our results provide first indications that NDVI could be used to 

quantify fresh grass allowance for grazing, but further research will be required in order to develop a 

remote sensing method for accurate fresh grass allowance estimation under different grazing 

management practices, species composition and soil conditions. 
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Abstract 

There is a need to determine grass quality during the grazing season to establish optimal rations in 

terms of CP content and to correct for low or high N fertilization. Recently, work has been done to 

determine grass quality using the NIR Handheld scanner of Agrocares. Grass samples from plots in the 

Netherlands and Germany were scanned in the lab, fresh and dried; 5 scans per sample. The dataset 

with dried samples was extended with scans of dry in-stock samples and another spectral database 

after spectral conversion. A calibration model was built for dried samples (n>6000). A subset of 337 

fresh grass samples was used to make a conversion model between wet and dry samples. The 

validation models for CP of dry and fresh samples had RSME values of 22.7 and 25.8 g kg-1 DM (R2 = 

0.68 & 0.58). Pilot use of the scanner on 10 farms took place in October 2019, measuring 5 spots directly 

in the field. These locations were then sampled and measured in a bucket. The results showed that CP 

was on average 6 and 2% lower compared to reference analysis, with a maximum deviation of 13 and 

18% respectively. The results are encouraging to further expand the calibration database. 

Keywords: grass, quality, scanning, crude protein, near infrared, handheld 

Introduction 

Strict control of the protein supply to dairy cattle is necessary to limit the N excretion in manure and 

urine and thus the risk of N losses. Efficient feeding is particularly successful in systems where dairy 

cattle stay year-round in the barn. However, in the Netherlands, more than 80% of the dairy farmers 

apply grazing during the summer season. Optimization of protein in the ration is difficult because protein 

content in grass is poorly known and can vary greatly during the season depending on fertilization and 

yield. There is an urgent need for tools that predict/measure N content of grass. Worldwide, much work 

has been done with modelling and remote sensing techniques (Honkavaara et al., 2020) but the 

applicability for grassland management support is still limited. Another route is direct non-invasive 

measurements. Agrocares has developed a Handheld NIR scanner (1300-2525 nm defined by the 

sensor specifications) for measuring soil and feed quality that is operated via a smartphone (Figure 1, 

www.agrocares.com). The goal is to make this sensor applicable for measuring grass quality directly in 

the field, to better control the (protein) supplementary feeding of dairy cattle and to use the information 

as a feedback for N fertilization. In this article we will elaborate on the realization of reliable grass quality 

predictions with the Handheld scanner. 

Material and Methods 

To use the scanner a calibration model and handling protocol for field use must be developed. For the 

latter it was important to test how to place the scanner on the grass so that enough grass material is 

present under the scanning window with no interference of the soil below. Therefore, in the lab different 

layers of thickness of grass were placed on a plastic base with its own unique spectral signal. At a 

certain thickness of material, the spectral signal of the plastic will not be observed. As gathering 

calibration data is expensive and measuring fresh grass with a high water content (80-90%) is difficult, 

we therefore used a step-by-step approach by developing calibration models for dried samples 

(validation), followed by building a wet-dry conversion model. For the dried (milled) grass samples, we 

used in-stock samples primarily from the Netherlands and Germany gathered in 2016-18. These were 

analysed and scanned with the Handheld scanner (about 1600 samples), 5 scans per sample. In 

addition, we extended this spectral database with grass spectra from an older lab NIR sensor after 

spectral conversion to the Handheld spectra. In this way we obtained an additional 5000 spectra for 

different parameters to build a calibration model. A wet-dry conversion model was also built on 337 of 

the samples gathered in the Netherlands and Germany during 2018 so that incoming field samples could 

utilize this calibration model. The dry-sample calibration models are built with Locally Weighted Learning 

(Atkeson et al., 1997) wrapped around a Gaussian Processes regressor (Rasmussen et al., 2006). 
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Important wavelengths are identified by the model. The machine learning approach that we used does 

not yield these automatically. The wet-dry conversion model uses an ensemble of GP regressors to 

convert the spectra from wet to dry. The models were evaluated both with 10-fold cross-validation, and 

with an independent validation set of 49 samples, both in dry and wet (the conversion model is applied 

before prediction) states. In autumn 2019, a pilot field test on 10 practical farms took place using direct 

in-field measurements with the scanner. The grass was cut from the scanned spots, placed in a bucket, 

and scanned (5 times), and compared with regular lab analysis of the samples. 

Results 

Experiments in laboratory conditions showed that 2 or more layers of leaves eliminate the spectral 

influence caused by the plastic. This means that grass at a grazing stage, and also a turf grass sward, 

should give enough layer thickness when the scanner is placed on top of the grass sward and stands 

by itself. This was confirmed in field testing. Due to the spectral difference between leaf tops and stems 

(different contents), and different grass composition between scanning spots, a first estimate based on 

at least 5 scans is necessary. However, this needs further evaluation and it also depends on the quality 

of the calibration. 

The 10-fold cross validation results of dried samples for ash, fibre, protein, and sugar content showed 

R2 > 0.9 (Table 1) with RMSE values varying between 10.5 and15 g kg-1 DM. 

Table 1. Calibration and validation results of dried grass samples and validation results of fresh grass 

samples (wet-dry). 

Element Calibration dried samples Validation dry wet-dry 

(g kg-1 DM) n 25% median 75% RMSE R2 n RMSE R2 RMSE R2 

Ash  6722 52 98 120 12.17 0.91 49 12.12 0.53 14.56 0.31 

Fat  2741 26 32 39 4.62 0.82 49 8.62 -1.00** 7.15 -0.38** 

Fibre 6357 190 230 260 15.28 0.95 49 17.77 0.52 19.38 0.43 

H20* 6558 47 59 72 4.54 0.94 49 7.44 0.61 10.53 0.21 

Crude protein  6948 88 160 210 10.45 0.98 49 22.68 0.68 25.82 0.58 

Sugar 3971 8.1 41 88 12.18 0.95 49 20.35 0.64 28.96 0.27 

Sulfur 238 2.2 2.8 3.8 0.51 0.84 48 1 -1.53** 0.96 -1.32** 

* Amount of H2O when drying 70 oC dried samples to 105 oC. ** Model performs worse than predicting the mean. 

Results on the validation set showed a drop to about 0.65 R2 for sugar, protein, and fibre (Figure 1a, 

CP). The conversion to a model for wet samples (fresh grass) and the resulting validation showed a 

further decrease in R2 (between 0.27 and 0.58), resulting in RMSEs for fibre, protein, and sugar of 19, 

26 and 29 g kg-1 DM respectively. 

 

Figure 1. a) Validation results (dry) of crude protein (R2=0.68) (left) and b) The crude protein content of 

10 grass fields on 3 October 2019 measured with the Handheld scanner (right) on 5 spots, directly in 

the field and after gathering grass in a bucket. 
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This means that the calibration set is still not fully representative for Dutch grass. Grass samples of 

different years, different spots and from early to late season needed to build a more representative 

database. Also, the number of wet samples (fresh grass) was very limited and needs to be extended. 

On the other hand, future improvements are still possible with alternative machine learning algorithms 

and modifications to the scanner, such as increasing the scanning area. Further investigation is needed 

to determine why the validation results are quite poor (limited database and/or weak spectral signal). 

The calibration model of Table 1 was used in the practical test, which was focused on crude protein. 

The lab-analyses, field scan (5 spots), and bucket scanning resulted in average CP contents of 237, 

252 and 242 g kg-1 DM. This suggests that bucket scanning (also five spots) is more accurate in 

predicting grass contents than spot scanning. Although further improvement of the predictions is 

necessary, the farmers showed great interest in the results and indicated that it could help them in their 

feeding and fertilizer management. 

Conclusions 

The tested handheld scanner showed very good calibration results on dried samples. The prediction 

results of dry and wet validation samples were less good. This indicates a need for more attention to 

building a representative database. Bucket scanning of gathered samples from different spots seems 

the preferred way of using the scanner in field measurements. 
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Abstract 

Given the difficulties associated with field-based data collection, the use of remote sensing for estimating 

environmental heterogeneity is a powerful tool since it provides a synoptic view of an area with a high 

temporal resolution. This paper presents, as an example, a case study applied to a grassland area and 

provides insights about the potential use of remotely sensed data for estimation of grassland diversity. 

Keywords: biodiversity, ecological informatics, heterogeneity, open source algorithms, remote sensing 

Introduction: biodiversity from above 

Finding ecological proxies of species diversity is important for developing effective management 

strategies and conservation plans for natural areas at various spatial scales, whether local (e.g. Osborne 

et al., 2007), regional (e.g. Wohlgemuth et al., 2008) or global (e.g. Rahbek et al., 2007). Species 

information has traditionally been collected directly from the field prior to biodiversity assessment. 

Inevitably, when sampling species in the field a number of issues need to be solved first, such as: (i) the 

number of sampling units to be investigated, (ii) the choice of the sampling design, (iii) the need to clearly 

define the statistical population, (iv) the need for an operational definition of a species community, etc. 

(Chiarucci, 2007). Furthermore, standardized field sampling or ground surveys, whether of plant or 

animal communities, are time-consuming and costly, despite being the most accurate methods for 

collecting species diversity data. Therefore, a priori knowledge of areas with higher diversity means that 

attention can be focused on them, thus helping to minimize the cost and time involved in monitoring 

(e.g. Rocchini et al., 2005). 

The causal relationship between species diversity and environmental heterogeneity has been a long-

lasting interest among ecologists. Environmental heterogeneity is considered to be one of the main 

factors associated with a high degree of biological diversity given that areas with higher environmental 

heterogeneity can host more species due to the greater number of available niches within them (Gaston, 

2000; Hortal, 2008). Given the difficulties associated with field-based data collection, the use of remote 

sensing for estimating environmental heterogeneity and hence species diversity is a powerful tool since 

it provides a synoptic view of an area with a high temporal resolution (Loarie et al., 2007). For example, 

the availability of satellite-derived data, such as those gathered by the Landsat program, makes it 

feasible to study all parts of the globe with a resolution of up to 30 m (readers are referred to Tucker et 

al., 2004 for a description of the Global Land Cover Facility freely hosting this kind of data). In addition, 

Open Source systems for robustly analysing remotely sensed imagery are now also available (Rocchini 

and Neteler, 2012). From this point of view, the development of Free and Open Source algorithms to 

measure and monitor (i.e. repeated measures over time) landscape or ecosystem heterogeneity from 

space would allow robust, reproducible and standardized estimates of ecosystem functioning and 

services (Rocchini and Neteler, 2012). Furthermore, their intrinsic transparency, community-vetoing 

options, sharing, and rapid availability are also valuable additions and reasons to move towards open 

source options. Among the different open source software options, the R software is certainly one of the 

most used statistical and computational environments worldwide and different packages have already 

been devoted to remote sensing data processing for: (i) raster data management (raster package, 

Hijmans and van Etten (2020)); (ii) remote sensing data analysis (RStoolbox package, Leutner et al. 

(2019)); (iii) spectral species diversity (biodivMapR package, Féret and de Boissieu (2020)); (iv) Sparse 

Generalized Dissimilarity Modelling based on remote sensing data (sgdm package, Leitao et al. (2017)); 

(v) entropy-based local spatial association (ELSA package, Naimi et al. (2019)); or (vi) landscape 

metrics calculation (landscapemetrics package, Hesselbarth et al. (2019)), to name just a few, (vi) 
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diversity metrics on remote sensing data (rasterdiv package, Marcantonio et al. (2021)). Readers can 

also refer to https://cran.r-project.org/web/views/Spatial.html for the CRAN Task View on analysis of 

spatial data. 

Spatial variability in the remotely sensed signal, hereafter referred to as spectral heterogeneity or 

spectral variability, is expected to be related to environmental heterogeneity and could therefore be used 

as a powerful proxy of species diversity. This is true in light of the Spectral Variation Hypothesis, which 

states that the greater the habitat heterogeneity, the greater the species diversity within it (Palmer et al., 

2000, 2002), regardless of the taxonomic group under consideration. Besides random dispersal of 

species (Hubbel, 2001), a higher heterogeneity of habitats will host a higher number of species each 

occupying a particular niche (niche difference model, Nekola and White, 1999). This hypothesis has 

been successfully tested with various taxa, such as vascular plants (e.g. Gould, 2000; Foody and Cutler, 

2006; Levin et al., 2007), lichens (Waser et al., 2004), ants (Lassau et al., 2005), birds (St-Louis et al., 

2009), and mammals (Oindo and Skidmore, 2002). 

Grassland ecological patterns monitored by remote sensing 

From a European perspective on nature conservation, cultural landscapes, including semi-natural 

grasslands, contain a mosaic of significant wildlife habitats (Moreira et al., 2006). The abandonment of 

traditional management techniques in favour of intensification of agriculture is quickly reducing the 

amount of traditional cultural landscape units within the landscape matrix, producing an overall 

homogenization of the landscape (Antrop, 2005). The loss of the traditional state of dynamic equilibrium 

between human intervention and natural dynamics, accompanied by the regeneration of natural systems 

(e.g. shrub encroachment), has direct implications on biodiversity (Rocchini et al., 2006). 

As remote sensing is increasingly being incorporated into ecological management to support decision 

making, the need for rapid mapping of biodiversity is increasing continuously. As an example, grassland 

diversity can be estimated based on the previously mentioned relationship between heterogeneity and 

species diversity in the field (Spectral Variation Hypothesis). 

Based on the aforementioned algorithms, grasslands areas have been extensively explored to measure 

diversity- or biomass-related patterns directly from remotely sensed imagery. As an example, Vescovo 

and Gianelle (2006) demonstrated the power of the ASPIS (Advanced Spectroscopic Imaging System) 

for measuring the green herbage ratio (GR), the equivalent of the biomass/(biomass + necromass), i.e. 

an important biophysical parameter as it is a fundamental indicator of photosynthetic activity of 

vegetation components, with an R2 overwhelming 0.70. 

Biomass-related measurements are quite simple to attain by remote sensing data. This is also true for 

the well-established measurement of phenological variability. Reed et al. (1994) made use of the 

Normalized difference vegetation index (NDVI) data derived from the National Oceanic and Atmospheric 

Administration’s Advanced Very High Resolution Radiometer (AVHRR) satellite sensor to measure key 

phenological events in different ecosystems including grasslands. They achieved a strong coincidence 

between the satellite-derived metrics and predicted phenological characteristics, e.g. the interannual 

variability of spring wheat in North Dakota, characterized the phenology of four types of grasslands. 

In contrast to the measurement of many other vegetation attributes, plant species composition is difficult 

to detect with remote sensing techniques (Schmidtlein and Sassin, 2004). 

The mapping of continuous floristic gradients might also be affordable when relying on hyperspectral 

imagery, namely a remote sensor with several spectral bands, in each of which there might be peaks of 

reflectance for different species. This would be particularly useful in grassland ecosystems in which 

different herbs and annual species might show a very similar reflectance pattern when relying on few 

bands or, in the worst case, on only the visible part of the spectrum (i.e. the part that the human eye is 

able to see, from the blue to the red wavelengths).  A practical example is provided by Schmidtlein and 

Sassin (2004). These authors spatially modelled floristic gradients in Bavarian meadows by 

extrapolating axes of an unconstrained ordination of species data. This allowed them to map floristic 

gradients based on high-resolution hyperspectral airborne imagery, with a high agreement with ground-

based data, up to an R2 equalling 0.71. From this point of view, satellite remote sensing has been widely 

used for grassland diversity estimate, including the use of: (i) low resolution AVHRR data for studying 
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wide grasslands biodiversity (Oindo and Skidmore, 2002), (ii) multitemporal data for grassland diversity 

dynamics investigation (Alì et al., 2026), (iii) Sentinel-1 and Sentinel-2 data for the prediction of plant 

diversity (Fauvel et al., 2020). 

Remote sensing is clearly not a panacea for solving measures and issues concerned with all organism-

based aspects of diversity, like taxonomic, functional, genetic; but it can represent an important 

exploratory tool to detect diversity hotspots and their changes in space and time at the ecosystem level. 

In this Proceedings paper, I hope to stimulate debate about the power of remote sensing for investigating 

grassland diversity. 

The symposium presentation of this paper shows additional examples including unmanned aerial 

vehicles (e.g., drones) which are expected to provide good results for present and future research in 

this field, given the generally high spatial resolution of images as well as the possibility to customize 

camera settings, and make use of different wavelengths-based sensors depending on the final 

ecological aims. 
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Abstract 

This paper gives a broad perspective on the key aspects of grasslands monitoring, with a focus on scale 

of analysis. The section ‘Monitoring of grasslands using remote sensing: key aspects’ discusses 

interrelated aspects important in grasslands mapping. The section ‘Classified vegetation unit’ is devoted 

to a brief description of classifiable units, such as species, communities/habitats or ecosystem types. 

Next, Unmanned Aerial Vehicles (UAVs), and aerial and satellite platforms are presented, followed by 

a discussion of data resolution within the context of mapping. The ‘Methods of the data collection, 

processing and analysis’ section encompasses field data collection, additional variables and 

classification algorithms. Each section provides examples of grassland mapping studies. 

Recommendations for practitioners from these studies are highlighted in the ‘Conclusions’ section. 

Keywords: communities, ecosystem types, habitats, mapping, scale, species 

Introduction 

Grasslands are one of the most challenging study objects of research due to their spatio-temporal 

dynamics. Remote sensing can provide biophysical parameters and also classify species, 

communities/habitats or ecosystem types. Focussing on classification is encouraged when it brings a 

reasonable cost reduction in comparison to field research, and when the data provide the required level 

of information and scale (Bock et al., 2005). During the last 30 years there has been significant 

technological development of consistent, accurate and robust tools for grasslands mapping (Ali et al., 

2016). 

In the mapping context, different scales play a role: the scale of time, and the scale of spectral and 

spatial data resolution have to be considered. Firstly, an important aspect is the vegetation unit as the 

study object. It is selected depending on what the final map will be used for: do we want to focus on 

individual species in a specific place, or are we interested in a general but more spatial overview of 

grassland communities? Different physiognomies of species in different growing stages can be captured 

by remote-sensing instruments, depending on the data resolution and date of acquisition. In this 

context, special attention should be paid to the spatial, spectral and temporal resolutions of acquired 

data; however, as is well known, they vary for different platforms – satellite, aerial or UAV. For 

monitoring practice it is important to achieve a high accuracy of mapped unit classification. Hence, 

beside the aforementioned aspects, the methods of data processing and analysis play a crucial role. 

The goal of this study is to give an overview of the key aspects of grasslands mapping using optical 

remote sensing based on our relevant experience and studies in north-eastern Europe, and taking into 

account scale of analysis. We aim to evaluate these aspects in terms of the potential to maximize 

classification accuracy. Classification accuracy is assessed by User’s Accuracy [UA] and Producer’s 

Accuracy [PA] for classified categories/objects, and by Overall Accuracy [OA] and Kappa for all 

classified images. (PA is the probability that a reference class is classified correctly, UA is the probability 

that a pixel in the classification actually represents this reference (field) class; OA is defined as a share 

of correctly classified pixels on the total number of pixels and Kappa index compares the result of the 

classification with the classification created by a random process of classifying pixels into individual 

classes (1 means a perfect match and 0 represents a purely random result; Jensen, 2005)). 

All above mentioned scales/aspects are interconnected and their evaluation should lead to a better 

understanding of how remote sensing can improve grasslands monitoring practice. 
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Monitoring of grasslands using remote sensing: key aspects 

In this section we discuss key aspects of grasslands monitoring using remote sensing in terms of the 

scales mentioned in the Introduction. They all influence the final map (Figure 1). 

 

Figure 1. Key aspects of grassland monitoring using remote sensing. 

Classified vegetation unit 

The minimal mapping unit is usually set according to the goals of the grasslands monitoring and is 

dependent on the features of available remote-sensing data. Traditionally, vegetation units are delimited 

based on expert phytosociological knowledge. Since we are analysing grasslands with the use of remote 

sensing, we expect that different units may be ‘visible’ from the sensor. Based on common literature in 

which grasslands have been classified with remote-sensing data, we can distinguish single species or 

larger complexes that form communities or habitats, or, ultimately, we may be interested in a grassland 

ecosystem as a whole. Selecting the appropriate unit that can be classified with specific data allows us 

to determine the optimal legend of the final map. Classifications of grasslands in relict Arctic–alpine 

tundra of the Krkonoše Mts (Czechia) at the level of habitats and communities (closed alpine grasslands 

dominated by Nardus stricta, grasses except Nardus stricta and subalpine vaccinium vegetation) were 

performed by Suchá et al. (2016) and Kupková et al. (2017) on satellite remote-sensing data (Landsat 

8 and Sentinel-2). The same studies provided satisfactory results on the level of selected individual 

dominant grass species classified from aerial hyperspectral (HS) and multispectral (MS) data. For 

example, Nardus stricta stands were classified with 79% PA and 87% UA from aerial HS data. In the 

case of Deschampsia caespitosa, stands PA reached 88% and 89% UA using the same data. 

Platform (height) of data acquisition 

Scale of mapping and related spatial resolution are described in more detail in subsection 2.3 and 

depend on the platform used (height of the data acquisition; Table 1). 

Table 1. Main features of remote-sensing platforms. 

Platform Satellite Aerial UAV 

Height above 
ground 

Hundreds of kilometres Hundreds of metres to 
several kilometres 

Tens to hundreds of metres 

Area size Up to global/continental 
level 

Regions (square kilometres) Localities (hectares) 

Spatial res. Hundreds of metres to 
metres 

Metres to tens of centimetres Tens of centimetres to 
centimetres 

Costs Some freely available; 
commercial expensive 

Rather high Relatively cheap, cheaper 
than aerial and commercial 
satellites 

Main advantages Regular overflights; 
coverage of extensive 
area 

Big area with high spatial 
res.; different sensors at one 
time 

Operability (temporal, spatial 
res.); use of different types of 
sensors 

Main 
weaknesses 

Clouds; rather low 
spatial res. 

Clouds; permission; costly Clouds; wind; permission; 
small area 
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Data resolutions 

The final scale of elaboration and classification accuracy of grasslands depends on spatial, spectral and 

temporal resolutions, which are based on data acquisition platform and sensor. 

Spatial resolution 

Spatial resolution is the main parameter influencing classification detail (the number of legend categories 

that are distiguishable). To be able to determine the best scale of elaboration, studies that tested 

different spatial resolutions within the same area and used classificaton legends with different number 

of categories are important. When we compared data with different spatial resolutions classified for the 

same area in the Krkonoše Mts, all 8 categories (six grass species and two other vegetation categories) 

were distinguishable from UAV HS and MS data (see Figure 2 – results for UAV data). While the legend 

had to be generalized for satellite and aerial data it was not possible to distinguish some less abundant 

grass categories and individual trees/shrubs in their pixels. 

 

Figure 2. Data and classification results (research plot Zahrádka; Kupková et al., 2021). 

The other aspect is classification accuracy in case of different number of classified categories. Figure 3 

compares obtained classification accuracies in case of legends with 8, 5 and 3 categories. When pixel 

size reached centimetres (HS UAV data), and also metres (PS data), it was possible to classify dominant 

Calamagrostis villosa and Nardus stricta species with reasonably high accuracies (Figure 3). 

 

Figure 3. Best achieved results of PA (left) and UA (right) in % for selected grass categories (Kupková 

et al., 2021). AV – Avenella flexuosa; CV – Calamagrostis villosa; NS – Nardus stricta; PS 3C – 

PlanetScope data, legend with 3 categories; APEX 3C – APEX data, legend with 3 categories; OF 5C 

– UAV RGB orthophoto, legend with 5 categories; HS 5C – UAV HS data, legend with 5 categories; OF 

8C – UAV RGB orthophoto, legend with 8 categories; HS 8C – UAV HS data, legend with 8 categories). 
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Moreover, the number of classified categories did not play a significant role in final accuracy (see the 

accuracy of Calamagrostis villosa and Nardus stricta for HS UAV data or ortophoto using legend with 5 

and 8 categories). Meanwhile, for species with low coverage (Avenella fleuxosa), even data with 

extremely high spatial (and spectral) resolution need not provide sufficient accuracy (UA around 50% 

for HS UAV data with 9 cm pixel). And it seems that higher number of categories leads in this case to a 

lower classification accuracy (compare UAs and PAs of Avenella fleuxosa for orthophoto and HS UAV 

data using legend with 5 and 8 categories). Smaller pixel size does not always bring better accuracy, 

the species coverage/abundance and a number of classified categories also plays a role. 

In such a situation, it would appear to be of value to analyse data with the same spectral resolution but 

different spatial resolution. When vegetation of the Karkonosze Mts in Poland was classified on 

spectrally similar APEX (Airborne Prism Experiment) and EnMAP (Environmental Mapping and Analysis 

Program) data at very different spatial resolutions of 2.7 m and 30 m, respectively, the results for 

grasslands were both still highly satisfactory (for APEX about 98% UA and PA and for EnMAP 94% PA 

and 86% UA; Marcinkowska-Ochtyra et al., 2017). However, due to the large EnMAP pixel, it was not 

possible to distinguish two classes (herbs and ruderal vegetation), so the final legend was developed 

just for this data. Nevertheless, among the eight classes, grasslands came second in terms of accuracy. 

As mentioned above, an important feature is the coverage of the vegetation unit in the polygon used for 

classifier training. In the research where 1-m HySpex data were used for species classification in the 

Jaworzno Meadows Natura 2000 area in Poland, homogeneous patches of Molinia caerulea species 

with rare coexistence with other species were determined with high accuracy (more than 80%), while 

for Calamagrostis epigejos, often co-occurring with Solidago spp., it was difficult (about 60% PA and 

UA; Marcinkowska-Ochtyra et al., 2018a). Empirical studies have revealed that less than 40% coverage 

of species results in lower accuracy. 

Spectral resolution 

The differentiation between particular species/habitat/communities in available spectral ranges allows 

them to be classified properly. The significance of spectral resolution as compared to spatial resolution, 

and their synergy, is discussed in vegetation mapping studies. In Suchá et al. (2016), orthoimages of 

12.5-cm pixel and four bands performed better than WorldView-2 satellite data with better spectral 

resolution (eight bands) and lower spatial resolution (2 m), so spatial resolution proved to be more 

significant (in both cases, bands were registered in visible and near infrared [VNIR] range). However, 

UAV MS data with 1-cm pixel (orthophoto) were classified with significantly lower accuracy than UAV 

HS data with 9-cm pixel (OA differ by about 10 percentage points for eight and five legend categories 

[Kupková et al., 2021]). 

A breakthrough in remote sensing is planned to be provided in 2022 by HS satellites as part of the 

aforementioned EnMAP mission, and these will include up to 99 bands from VNIR and up to 163 bands 

from SWIR (shortwave infrared) regions. High grasslands classification accuracy was obtained by this 

high spectral resolution of simulated data (as the pixel is only 30 m; Marcinkowska-Ochtyra et al., 2017). 

However, currently available MS Sentinel-2 data also has valuable bands that are fewer in number (13) 

but that are relevant to vegetation analysis – two SWIR and red-edge bands, which have been shown 

as the most important in grasslands classification of the Karkonosze Mts (PA and UA more than 70% 

[Wakulińska and Marcinkowska-Ochtyra, 2020]). 

Temporal resolution 

As the physiognomy of grasslands is dynamic in time and affected by, for example, weather or 

management practice, the most important date during the growing season should be indicated for a 

given species or community/habitat. This specific timing is important because it allows grasslands to be 

distinguished from background based on knowledge of the specific phenological development of 

particular classes. For example, the best time for species identification was September 

for Calamagrostis epigejos, as this was the time of optimum fruit formation, and August for Molinia 

caerulea, when it was in flower (Marcinkowska-Ochtyra et al., 2018a). However, that last date of data 

acquisition was the beginning of September and Molinia were not yet changing colour, as Schuster et 

al. (2015) recommend. So the results could be better if data from near to the end of September were 

used. 
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Multi-temporal classification, which takes into account datasets consisting of several terms of data 

acquisition, can be viable when spectral information is insufficient to distinguish similar grasslands. Multi-

temporal orthophotos and HS data provided better results than did single-date data (1–3% difference in 

favour of multitemporal composites from two terms; Kupková et al., 2021). When analysing three 

grassland Natura 2000 habitats at the Ostoja Nidziańska site in Poland (6210 – semi-natural dry 

grasslands and scrubland facies, 6410 – Molinia meadows and 6510 – lowland hay meadows) HySpex 

combined data from May, July and September also allowed higher accuracy than single-date data 

(Marcinkowska-Ochtyra et al., 2019). However, July and September datasets provided comparable 

results (the differences in PA and UA less than 2%). It is worth emphasizing that there are not many 

studies that use multi-temporal HS data on grasslands. At the moment they are rather expensive, and 

the use of satellite data such as Sentinel-2 in this context is valuable. Wakulińska and Marcinkowska-

Ochtyra (2020) proved that combining the first three out of four analysed terms (31 May, 7 and 27 

August, and 18 September) provided the best OA (about 80%; 70–72% for single-date) and, of the eight 

analysed vegetation classes, the greatest significance was for grasslands. The aspect of high temporal 

resolution allow denser time series to be used that can lead to even more detailed analysis. 

Methods of the data collection, processing and analysis 

Field data collection 

Reliable grassland classification is also subject to the availability of accurate training and validation field 

data. It is important that they are synchronous with image data collection and fit the data resolution and 

vegetation unit. Collaboration between specialists in geoinformatics and botanists is essential to obtain 

high accuracy. The map legend is defined based on vegetation unit and presented classes (all classes 

occurring in a given area or only the objects of interest, e.g. grassland species). It is valuable to observe 

their additional features (coverage, dry matter, dominant/coexisting species, etc.). 

Additional variables 

Apart from using the spectral bands themselves, the use of additional variables like spectral indices, 

Airborne Laser Scanning (ALS) derivatives, transformation products or additional terms of data 

acquisition can potentially raise final grasslands classification accuracy (Bock et al., 2005). Some 

species prefer specific habitats (e.g. wet for Molinia caerulea), so adding topographic indices to the 

classification can increase accuracy. However, this is not valid for the wider ecological spectrum of 

Calamagrostis epigejos (Figure 4). 

Figure 4. Kappa accuracies for different scenarios of datasets for expansive species mapping (sc1 – 

original bands, sc2 – Minimum Noise Fraction (MNF) transformed bands, sc3 – MNF+Canopy Height 

Model, sc4 – MNF+vegetation indices, sc5 – MNF+ALS derivatives, sc6 – MNF+ALS and full-waveform 

data, sc7 – MNF+topographic indices, sc8 – MNF+full-waveform data, sc9 – MNF+all products; 

Marcinkowska-Ochtyra et al., 2018a). 

The potential of bigger datasets is assessed by, for example, the use of variable importance, which 

allows the most important ones to be assessed throughout the process and the most relevant ones to 
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be selected for optimization. This can be presented by, for example, a mean decrease in accuracy 

calculated for multi-temporal data to which topographic indices were included in the classification of 

Natura 2000 habitats (Figure 5). For habitat 6210, which occurs on steep slopes with southern exposure 

and high insolation, the three variables at the top of the variable importance plot are related to the 

specific type of substrate (contrary to the classification of habitat 6510). 

 

Figure 5. The ten most important variables in habitat mapping (*May, **July, ***September, MRVBF – 

Multiresolution Index of Valley Bottom Flatness, MRRTF – Multires. Ind. of Ridge Top Flatness, TPI – 

Topographic Position Ind., TWI – Topographic Wetness Ind., MCA – Modified Catchment Area; 

Marcinkowska-Ochtyra et al., 2019). 

Algorithms 

Currently, machine learning methods, e.g. Random Forest (RF) and Support Vector Machines (SVM) 

are popular in grasslands mapping. In general, SVM is used for large numbers of classes (about 20 

[Marcinkowska-Ochtyra et al., 2018b]), for several classes RF is more often used (e.g. Feilhauer et al., 

2014). When additional variables are included, it is also worth considering shortening the model training 

of the RF. In the case of grasslands, differences between object- (OBIA) and pixel-based approaches 

may also be of interest, as borders between communities and species are often vague. For example, 

on orthoimages and WorldView-2 data, Suchá et al. (2016) obtained better communities and species 

accuracy for OBIA with SVM (84%) than they did for pixel-based classifiers. For APEX and AISA Dual 

data, pixel-based SVM provided better accuracy (83%) than did OBIA (71–81%), while for Sentinel-2 

the best was Maximum Likelihood (78% [Kupková et al., 2017]). As can be seen, many factors as 

resolution, area, sample size and classes influence algorithm performance. 

Conclusions 

Based on own experience and other work, we draw the following conclusions: 

• Platform of data acquisition is essential for spatial resolution of images; even today’s advanced 

satellite technologies cannot provide pixels of tens of cm. 

• Each platform, or type of remote-sensing data, has its own advantages and drawbacks; these 

must therefore be taken into account when planning a grasslands mapping project (we should 

consider vegetation unit, detail of mapping, required accuracy, etc.). 

• To achieve the best accuracy on the species level it is essential to combine data with very high 

spatial (cm) and spectral resolution (HS); increased temporal resolution can improve 

classification accuracy – it is recommended to combine data from the main months of the 

vegetation season (June, July, August and September). A similar relationship is evident in the 

classification of habitats/communities and types of ecosystem, but a whole set is not always 



 
Grassland Science in Europe, Vol. 26 – Sensing – New Insights into Grassland Science and Practice 121 

 

needed – it is important to choose the best terms. As the unit increases, high spatial resolution 

is no longer as important as high spectral resolution. 

• When data of resolution below 1 m are not available, the main grass species can still be 

classified with rather high accuracy from aerial or satellite data with metre resolution, and a 

classification legend on the level of individual species can be used; however, species with low 

abundance will be classified with rather low accuracy (less than 60%). 

• Testing of different legends (with different number of categories and different levels of 

generalization) is recommended to reach the best accuracy for different types of data and 

individual vegetation categories (with regards to the spatial resolution of the data). 

• Collaboration between remote-sensing specialists and botanists is highly recommended for 

training and validation of data collection and legends elaboration. 

• Additional variables can increase the accuracy of results, but it is important to optimize the 

classification process and decide which variables will be particularly important for the grassland 

considered, depending on their physiognomy and their preferred conditions. 

• As for the different classification methods, OBIA seems to provide better results for extremely 

high spatial resolution data. Different pixel-based classifiers could work with different levels of 

reliability for different data and different grasslands categories.  

• When planning a grasslands mapping project all mentioned scales should be considered and 

the most suitable data and methods should be selected for the study goal. 

Finally, we conclude that remote sensing brings special features to grasslands monitoring and is a 

powerful tool in monitoring practice and nature preservation. However, remote-sensing specialists, 

organizations and companies, together with practitioners, will have to undertake further research to 

maximize the reliability of obtained products. 
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Abstract 

The intensity of land use in permanent grasslands affects both biodiversity and important ecosystem 

services. Optical satellite systems have already proven to be suitable for area-wide detection of proxies 

of grassland management intensity, namely mowing events. However, clouds lead to considerable gaps 

in time series, resulting in an underestimation of the total number of events. SAR systems like Sentinel-

1 (S1) can overcome this limitation, yet the information obtained is more complex to interpret. To test 

the synergy and complementarity of both sensor types for mowing detection, we computed high-density 

SAR and optical time series over three test sites in Germany covering detailed reference data on 

grassland management. For the growing periods in 2018 and 2019, we tested two binary, supervised 

machine learning algorithms, a convolutional neural network (CNN) and support vector machines (SVM), 

classifying sliding windows into mown and not mown. S1 VH/VV backscatter ratio, as well as Sentinel-

2 (S2) and Landsat 8 (L8) normalized difference vegetation index (NDVI), were used as input features. 

Both models show promising results in detecting mowing events, where SVM performed slightly better. 

Overall, the approach shows a high potential for routinely mapping grassland management intensity 

over large areas in heterogeneous environments. 

Keywords: mowing event detection, support vector machines, convolutional neural network, sensor 

fusion 

Introduction 

Increasing management intensity of agricultural areas is an important driver for biodiversity loss. 

Comprehensive knowledge on these management intensities is a crucial factor for sustainable decision-

making in landscape policy and planning (Foley et al., 2005). The management intensity of grassland 

can be described by the mowing frequency on meadows (Weiner et al., 2011). However, it is unfeasible 

to obtain area-wide information on mowing frequencies, e.g. by interviewing farmers or by the on-site 

collection of data. Several studies have proved remotely sensed optical and radar imagery data to be a 

valuable data basis for this task. There is, as yet, no best practice, and suitable reference data are an 

important prerequisite for validation and optimization (Reinermann et al., 2020). This study aimed to test 

two machine learning algorithms for the detection of mowing events in combined time series of Sentinel-

1 (S1), Sentinel-2 (S2), and Landsat 8 (L8) for test sites in three regions within Germany (central, North-

East, South-West). 

Materials and methods 

Comprehensive information on all management activities for a total of 56 meadows was provided for the 

test sites (Vogt et al., 2019). Dense time series of satellite data were derived for the entire growing 

season in 2018 and 2019. For S1, one orbit was chosen per test site and the σ0 VH/VV backscatter 

cross-ratio (CR) was processed. For S2 and L8, NDVI was calculated for all observations covering the 

test sites. Gaps induced by clouds and shadows were interpolated with a radial basis convolution filter 

using FORCE (Frantz, 2019). For all meadows, the median for the processed satellite data was derived 

using parcel boundaries. The time series were linearly interpolated to a 1-day interval and smoothed 

with a Savitzky-Golay filter. To translate the task into a supervised classification problem, shorter 

sequences were generated from the time series using a sliding window approach (Figure 1). If a mowing 

event happened on the middle day of a sequence, it was labeled as mown, otherwise as not mown. A 

length of 29 days was chosen to supply the classifier with information for 14 days before and after a 
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potential event and capture temporal trends. With a stride of one day, it was ensured that each day is 

the middle step of a sequence once. The class-imbalance was handled by random oversampling of the 

sequences which were labeled as mown. 

 

Figure 1. Schema of the sliding window approach. 

Two machine learning algorithms were trained on the created dataset, classifying the sequences into 

mown and not mown: a SVM classifier and a 1-D CNN with three convolutional layers adapted from 

Wang et al. (2017). The models were implemented with caret and Keras with TensorFlow as backend. 

To estimate the models’ ability to generalize the problem, a 10-fold cross-validation was conducted. 

Since the algorithms tend to classify consecutive time steps as events, these predictions were clustered 

and combined as a post-processing step. A temporal tolerance of 7 days was chosen for a prediction to 

be counted as true for the evaluation. All processing steps were carried out using R (R Core Team, 

2020). 

Results and discussion 

Table 1 shows a considerably higher recall for SVM than for CNN. The SVM model correctly detected 

71.9% of the events whereas the CNN model only detected 57.8%. However, the CNN’s predictions 

were more precise. For CNN, 59.8% of the predictions were true whereas only 54.3% for SVM. 

Summarizing recall and precision in the F1-score, the SVM outperformed the CNN with 0.615 compared 

to 0.579. 

Table 1. Averaged results of the 10-fold cross-validation for both models. 

Model Recall Precision F1-Score 

SVM 0.719 0.543 0.615 

CNN 0.578 0.598 0.579 

The confusion matrices reveal that SVM tends to overestimate the number of mowing events (Table 2). 

The CNN, in contrast, predicted fewer mowing events than present in the reference data. Compared to 

the high number of sequences that were not mown, the number of false positives is exceptionally low 

for both models. 

Table 2. Confusion matrices for the 10-fold cross-validation for SVM (a) and CNN (b) 

a) Prediction Reference Total 

 Not mown Mown  

Not mown 22567 48 22615 

Mown 104 120 224 

Total 22671 168 22839 
 

b) Prediction Reference Total 

 Not mown Mown  

Not mown 22609 71 22680 

Mown 62 97 159 

Total 22671 168 22839 
 

One explanation for the overestimation of SVM is the learning of a signal that often occurs during mowing 

events and seems to be necessary for an event to a certain point; e.g., this could be a drop in both NDVI 

and CR with a certain offset. However, the learned signal is not sufficient to classify an event 

unambiguously and occurs at other points in time. The moderate recall and precision for the CNN 

suggest a low degree of generalization. The learned signal appears along fewer mowing events, leading 

to a high number of omissions. Yet there are fewer occurrences of the learned signal unrelated to 

mowing events, resulting in fewer false detections compared to SVM. The recall value of the SVM 
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classifier is in the same order of magnitude as the results reported by Kolecka et al. (2018), who only 

used S2 imagery. This contradicts the assumption that the inclusion of S1 can significantly improve the 

mowing detection. Yet, a different method was used and only CR was tested as an S1-based feature. 

Conclusions 

The input features from S1, S2, and L8 in combination with the tested algorithms are suitable for the 

detection of mowing events. The tested models performed differently. SVM detected more mowing 

events than CNN. However, the CNN’s predictions were more precise and contained fewer false 

positives. Nevertheless, the accuracies show that the proposed method is not yet ready for operational 

use. Further research will tackle optimization tasks for both parameter selection and window sizes for 

the generated sequences. Other S1-based parameters like texture metrics and interferometric 

coherence could enhance the detection accuracy, just as adaptions of the CNN architecture to better fit 

the given problem. 

References 

Foley J.A., DeFries R., Asner G.P., Barford C., Bonan G., Carpenter S.R., …, Snyder P.K. (2005) Global 

consequences of land use. Science 309, 570–574. 

Frantz D. (2019) FORCE-Landsat + Sentinel-2 analysis ready data and beyond. Remote Sensing 11, 1124. 

Kolecka N., Ginzler C., Pazur R., Price B., Verburg P.H. (2018) Regional scale mapping of grassland mowing 

frequency with Sentinel-2 time series. Remote Sensing 10, 1221. 

R Core Team (2020) R: A language and environment for statistical computing. https://www.R-project.org/. 

Reinermann S., Asam S., Kuenzer C. (2020) Remote sensing of grassland production and management - a review. 

Remote Sensing 12, 1949. 

Vogt J., Klaus V., Both S., Fürstenau C., Gockel S., Gossner M., …, Weisser W. (2019) Eleven years’ data of 

grassland management in Germany. Biodiversity Data Journal 7: e36387. 

Wang Z., Yan W., Oates T. (2017) Time series classification from scratch with deep neural networks: A strong 

baseline. In: 2017 International Joint Conference on Neural Networks, Anchorage, AK, pp. 1578-1585. 

Weiner C.N., Werner M., Linsenmair K.E., Blüthgen N. (2011) Land use intensity in grasslands: Changes in 

biodiversity, species composition and specialisation in flower visitor networks. Basic and Applied Ecology 

12, 292–299. 

  



 
Grassland Science in Europe, Vol. 26 – Sensing – New Insights into Grassland Science and Practice 126 

 

Using yellowness in drone-based RGB images to map buttercup cover in 

an upland pasture 

Schneider M. K.1 and Willems H.2 

1Forage Production & Grassland Systems, Agroscope, Reckenholzstrasse 191, CH-8046 Zürich, 

Switzerland; 2Büro Alpe GmbH, Eichholzweg 11, CH-3053 Lätti, Switzerland 

Abstract 

The reduction of unwanted plant species in pastures is a persistent objective of grassland management. 

Evaluating different management options requires the assessment of the spatial coverage of the 

unwanted species. Here, we evaluate the use of drone-based images to quantify the cover of buttercup 

(Ranunculus acris) in an upland pasture (1654 m asl.) in the Central Swiss Alps. Buttercup is of primary 

concern because it is moderately toxic and avoided by grazers. Between 2016 and 2020, we conducted 

a randomized complete block trial with ten different treatments (combinations of grazing, mowing, liming, 

herbicide and overseeding) in four repetitions. Aerial images were taken annually at the peak of 

buttercup flowering, with a fixed-wing autonomous drone (senseFly eBee) carrying an RGB camera 

(Canon S110 and from 2019, senseFly S.O.D.A.) and post-processed using Pix4Dmapper. Yellowness 

was calculated as the percentage of yellow pixels using optimized thresholds on the RGB channels. The 

correlation coefficient between the yellowness of the images and the share of buttercup estimated by 

an independent observer was above 0.85 for the last two years. The newer S.O.D.A. camera 

outperformed the S110 due to its higher resolution, which was shown to be crucial for this kind of 

assessments. 

Keywords: subalpine pasture, weed cover, drone, RGB images 

Introduction 

Around one third of the agricultural land in Switzerland is located near or above the alpine treeline and 

only used during summer (Lüscher et al., 2019). It is grazed by ruminant livestock and characterised by 

shallow soils and undulating topography. Since there are fewer management options available in a pure 

grazing system than in mixed mowing-with-grazing, and since the harsh climate limits the growth of 

productive grasses, sward composition is often of primary concern. Buttercup (Ranunculus acris) is a 

common forb in many pastures that are fertilized with livestock manure. It produces the glycoside 

ranunculin which causes mouth blistering, intestinal disorder and potentially respiratory failure 

(Lamoureaux and Bourdôt, 2007). It is therefore avoided by grazing livestock and has a competitive 

advantage over more palatable species. Hence, buttercup can reach substantial cover in grazed 

pastures, thereby decreasing forage quality and usage. However, adequate regulation strategies to 

reduce its abundance are lacking. Since the assessment of species cover over large areas is labour-

consuming, we tested whether remote sensing can help to monitor the effects of regulation strategies 

already developed for invasive grasses and large-leaved forbs in grassland (see for example Malmstrom 

et al., 2017 and Lam et al., 2020). 

Materials and methods 

From 2016 to 2020, a field experiment was conducted on a summer pasture in the Meien valley in the 

Central Swiss Alps (46°44′30.1″ N, 8°29′14.8″ E) at 1654 m asl. The site is a slightly undulating valley 

bottom formed by the sedimented gravel of the river Meienreuss and covered by only 5-10 cm of organic 

topsoil. The pasture is grazed by dairy cows twice during summer in a rotational grazing systems. The 

sward is dominated by grasses (50-70% cover, mainly Agrostis capillaris, Festuca rubra and Phleum 

rhaeticum), buttercup (10-45%), and other forbs (10-25%, mainly Alchemilla vulgaris). Ten treatments 

were applied on subplots of 40 m2 in a randomized block design with four repetitions. Aerial images 

were taken annually at the peak of buttercup flowering, using a fixed-wing autonomous drone (eBee, 

senseFly, Cheseaux-sur-Lausanne, Switzerland) flying around 50 m above ground and carrying an RGB 

camera. Initially, a Canon S110 with 12.1 MPixels was used, which had to be replaced by a newer 

senseFly S.O.D.A. with 20 MPixels in 2019. The images were merged using Pix4Dmapper (Pix4D SA, 

Prilly, Switzerland) to a resolution of 2 cm and geolocated using ground control points. The yellowness 
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in all images was derived using threshold values of >167.9 for red, >170.7 for green and <86.4 for blue. 

These values were obtained by optimizing the average correlation coefficient over all five years. The 

obtained values were compared to estimates of buttercup cover on the ground made by a single 

observer every year. 

Results and discussion 

Image quality differed between years with lowest quality in 2017 and 2018 and the best in 2019 and 

2020. As examples, the data of 2018 and 2020 are shown in Figure 1. In 2018 the timing of the capture 

was not optimal right after the mowing. In addition, the Canon camera used in that year produced 

relatively blurred images. In 2020, the area was captured in full bloom and with the newer S.O.D.A. 

camera. This resulted in much more detectable yellowness in 2020 than in 2018. 

 

Figure 1. Aerial image of one block composed of ten subplots (left) and scatterplot of the colour values 

(right) in 2018 and 2020. Numbers in the left panel show yellowness. 

The yellowness of the images generally showed good agreement with the share of buttercup as 

estimated by an independent observer (Figure 2). Correlation coefficients ranged from 0.25 to 0.93. The 

low correlations in 2017 and 2018 were mainly due to many zero values due to inappropriate timing of 

the image capture. In 2019 and 2020, when the S.O.D.A. camera was used and the timing was optimal, 

the correlation coefficients were above 0.85. 

 

Figure 2. Correlation between the percentage yellowness in RGB images and the observed percentage 

cover of buttercup on the ground for the years 2016 to 2020. For each year, the coefficient of the 

correlation is given. 
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While the correlation between yellowness and observed buttercup cover was high, the absolute 

relationship varied between years. This can be seen in the different ranges of the x-axis in Figure 2. For 

example, an observed cover of 40% in 2016 corresponded to a yellowness of the image of 10%. In 

2020, an observed cover of 35% corresponded to a yellowness of 20%. Although buttercup cover was 

observed by the same person every year, some fluctuation cannot be ruled out. The data of 2019 and 

2020, nevertheless, suggest that yellowness can be used as an indicator of buttercup cover across 

years, if the camera and flight setup remain stable. The fact that none of the relationships followed the 

1:1 curve demonstrates the importance of quantitative ground measurements. 

Conclusions 

Yellowness in RGB images is a valid indicator for yellow plant species such as buttercup. If a single 

species should be detected, it is important that it is the dominant flowering species. The accuracy of the 

indicator depends, importantly, on the quality of the images, namely the resolution, contrast and blurring. 

The data show that a unique relationship between yellowness of the image and observed buttercup 

cover can only be established across multiple years if a similar flight setup has been used. Nevertheless, 

the study demonstrates the potential of drone-based images in assessing the cover of dominant weed 

species. 
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Abstract 

Lupinus polyphyllus Lindl. (lupine) is one of the most invasive plants in European grasslands. 

Information about up-to-date coverage of invasive lupine is essential for effective planning of control 

activities and evaluating biodiversity states of the grasslands. Thus, this study focused on developing a 

workflow to map lupine spatial coverage using the unmanned aerial vehicle (UAV)-borne remote sensing 

(RS) images instead of manual digitising of aerial images. The study was conducted at an experimental 

grassland setup in the UNESCO biosphere reserve Rhön in Germany. UAV-borne RGB, thermal images 

and their derivatives (e.g., canopy height model, texture, vegetation indices, etc.) were utilized. RS 

images were segmented to obtain image objects, and attributes for each image object were computed. 

Then image objects were classified using a random forest classification model based on objects' 

attributes. The mean prediction accuracy of the classification models was 89%. The classification-based 

lupine coverage maps showed a ±5 % disagreement in the lupine area compared to the image digitising 

method. Overall, the developed workflow with UAV-borne RS images demonstrated that it could be 

adopted for accurate mapping of lupine in grasslands in an efficient way. 

Keywords: invasive plant species, unmanned aerial vehicles, object-based image analysis, spatial 

coverage mapping, grassland 

Introduction 

Biodiversity in many ecosystems in the world is threatened due to biological invasion by alien plant and 

animal species. In Europe, 3749 alien plants are currently naturalized in different ecosystems, and 37.4 

% of them occur in grassland habitats (Lambdon et al., 2008). Lupinus polyphyllus Lindl. (hereafter 

referred to as lupine) native to the western North America, is a widespread invasive species in European 

grasslands (Fremstad, 2010). In the last few decades, the UNESCO biosphere reserve Rhön in 

Germany was invaded by lupine. This has changed species-rich grasslands into species-poor 

dominance (Otte and Maul, 2005). Thus, knowledge of the spatial distribution of lupine in the grasslands 

is crucial for handling invasive lupine control activities and examining their efficacy. Manual digitalisation 

of aerial images is the current method employed to obtain spatial coverage of the lupine distribution in 

grasslands (Klinger et al., 2019), but its time and labour demands mean this practice is not adequate to 

provide up-to-date lupine coverage. Thus, this study proposed an approach to map spatio-temporal 

coverage of lupine in the grasslands using very high-resolution images acquired using an unmanned 

aerial vehicle (UAV) as an effective alternative. 

Materials and methods 

The study was carried out in the two lupine invaded grassland fields in Germany's Rhön biosphere 

reserve. In both fields, rectangular plots of 1500 m² were chosen as study areas, and 15 small plots of 

64 m² were established within a 5 x 3 grid pattern. Three cutting dates in summer 2019 (12 and 26 June 

and 9 July) were randomly assigned to 5 replicated plots. At each cutting date in each grassland field, 

the UAV-borne images were acquired using a DJI-Phantom IV quadcopter (DJI, China). The UAV was 

equipped with a commercial-grade RGB camera and a thermal camera (FLIR Vue Pro R). The UAV was 

flown at 20 m altitude, which yielded 1 cm and 2 cm ground sampling distances from RGB and thermal 

cameras. All the UAV-borne images were processed to obtain a canopy height model (CHM) raster, a 

point density (PD) raster, an RGB ortho-mosaic, and a thermal ortho-mosaic using Agisoft PhotoScan 

software (Agisoft LLC, Russia). RGB mosaic image was then converted to hue, intensity, and saturation 

mosaic (HIS mosaic). 

Object-based image analysis technique was utilized in this study. The CHM raster, PD raster and hue 

image from HIS ortho-mosaic were used to obtain image objects using GRASS GIS software. In total, 
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32 attributes (4 geometric and 28 image-based) were generated for each image object based on the 

derived raster's mean and standard deviation values. 10% of the total image objects were manually 

labelled as lupine and non-lupine, and those labelled objects were employed to build supervised 

classification models using a random forest algorithm. Six classification models were trained and tested 

by holding out a dataset from each date and site combination. Later, all labelled data were employed to 

train a final model for predicting label for the remaining 90% of the objects' labels. Based on predicted 

labelled objects, the lupine coverage map for each site and each date were generated. Area-wise and 

pixel-wise comparison of classification based lupine map and the manually digitized lupine map were 

conducted. 

 

Figure 1. Lupine coverage map (pink patches) overlaid on the RGB image from the proposed 

classification method (top left) and manual digitising (top right). The hue image (left), thermal image 

(middle), and canopy height model (right) for the same area are shown at the bottom. 

Results and discussion 

According to the six classification model results, the models' overall accuracy varied between 78% and 

97%. Except for one model, all other five models resulted in less than 9% false-positive-rate. In each 

instance, the trained model was tested using a dataset from a different location and specific date (sward 

maturity). Hence, overall performances of the six models revealed high model stability and robustness 

across time and space. This indicates that developed models could be easily transferred to other 

grassland sites of varying maturity. 

The final model with all data showed 94.2% training accuracy, and canopy height (CHM) was the most 

vital attribute to distinguish lupine and non-lupine objects. This indicated the one advantage of UAV-

borne images: they allow deriving of height information that can be helpful to separate two plants based 

on height differences. However, the attributes based on thermal images did not provide a significant 

impact on the classification model. The area-based comparison between the lupine coverage map from 
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the proposed methodology and the manual digitizing method revealed a maximum of 5% of the total 

lupine coverage. A relative number of no-difference pixels from two lupine maps always showed more 

than 80% of pixels from both maps matched their labels. 

Conclusions 

The proposed approach demonstrated that spatio-temporal coverage of lupine in grasslands could be 

mapped efficiently using high-resolution images acquired from UAV. Moreover, the classification model 

can be transferred to other regions, thereby overcoming the limitations of the standard way of lupine 

mapping. Finally, the developed procedure can be adopted to map other invasive species in grasslands 

and other ecosystems. 
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Abstract 

Incorporating white clover (Trifolium repens L.) into grass swards can reduce the requirement for 

nitrogen (N) fertilizer due to its ability to fix atmospheric N and can also result in increased dairy cow 

milk production through increased herbage quality. Quantifying sward white clover content is laborious 

and time consuming. The objective of this study was to capture images and data to train a machine 

learning model to estimate sward white clover content. A dataset containing 515 images of grass and 

grass-white clover swards and associated ground-truth data was developed. A deep learning model was 

trained to estimate the content and percentages of grass, white clover and weed components with good 

accuracy directly from Irish sward images. 

Keywords: biomass prediction, machine learning, deep learning, grass, white clover 

Introduction 

Incorporating white clover into grass swards can reduce the requirement for nitrogen (N) fertilizer due 

to its ability to fix atmospheric N and can result in increased dairy cow milk production through increased 

herbage quality (Egan et al., 2018). Quantifying sward white clover content is laborious and time 

consuming, however. Recently there have been successful efforts to use machine learning to predict 

the dry matter (DM) yield of clover and grass directly from ground-level images. These efforts aim to 

provide a fast and non-destructive approach to biomass yield prediction that will help farmers to optimize 

management decisions including fertilizer usage, seeding density, and crop rotation. Mortensen et al. 

(2017) detail their approach to segment 28 hand-annotated images to classify grass and clover 

individually from soil, followed by step-wise linear regression to estimate dry biomass from the 

segmentation. Søren Skovsen et al. (2017) and (2018) used fully convolutional networks (FCNs) to 

semantically segment synthetically simulated grass-clover images. They then performed segmentation 

on real images and used the resulting pixel-wise percentages to estimate the biomass composition. 

Previously, Narayanan et al. (2020) presented results from a more direct pixel-to-biomass estimation 

approach using a publicly available grass-clover image dataset collected from farms in Denmark (Soren 

Skovsen et al., 2019). The objective of this study was to capture an image dataset in Ireland to train a 

machine learning model to estimate sward white clover content. 

Materials and methods 

A total of 515 images with ground truth were captured from grass-only and grass-white clover plots (9 

m ×1.5 m) at Teagasc, AGRIC, Moorepark, Fermoy, Co. Cork, Ireland. Each image corresponded to a 

0.5×0.5 m quadrat with 5-6 images taken from each plot. Images were captured between 21st and 23rd 

July 2020. There were 13 grass-only plots and 13 grass-white clover plots in each of 4 replicates. 

Herbage within each quadrat was harvested at 2-4 cm above ground level using a Gardena hand shears 

(Accu 60, Gardena International GmbH, Ulm, Germany) immediately after image capture. Fresh weight 

was recorded and harvested herbage was separated, dried and weighed to give DM yield plus 

percentage composition of grass, clover and weeds as ground truth. Figure 1 shows sample images 

from this dataset. 
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Figure 1. Sample of collected images in the Irish dataset. 

Data pre-processing: Working with convolutional neural networks requires a standard input image size 

and shape across images. Accordingly, all the images in the dataset were cropped to the quadrat 

boundaries, resized to a fixed size by padding them, and standardized into square shapes. Thus, we 

were able to retain the aspect ratio of the images when dynamically resizing them during training. We 

used all 515 images after pre-processing for this preliminary analysis, dividing them into a training set 

(412 images) and a validation set (103 images). 

Experiments: Two experiments were performed to establish the suitability of using these images for 

future experiments in biomass estimation and other phenotype analyses. The first experiment used the 

model from Narayanan et al. (2020), trained on the images from Danish farms using ground-truth data 

imputed with the mean imputation method (which resulted in the best performance described in that 

paper), to make predictions for the 515 squared images. The ground-truth values for grass-clover and 

weeds are expressed in percentages, and take a value in the range [0, 100]. In the second experiment 

the model was re-trained on the Irish dataset. Briefly, all of the convolutional layers of the VGG-16 

architecture with pretrained weights from Imagenet were used for transfer of feature representations, 

and the weights were frozen. The fully connected layers and the output layer for classification in VGG-

16 were replaced with two fully connected layers (reLu activations on 4096 and 256 neurons 

respectively), each followed by a batch normalization, and a final softmax output layer with three neurons 

for three targets, i.e. grass, clover and weed percentages. The model was trained without any data 

augmentation or dataset expansion. 

The performance was measured using root mean square error (RMSE) and mean absolute error (MAE) 

of the estimated percentages of sward biomass content compared to ground truth. All experiments were 

performed in the Python programming language using the scikit-learn (www.scikit-learn.org) and 

tensorflow.keras (www.keras.io) packages. 

Results and discussion 

Table 1 summarizes the performance of the Narayanan et al. (2020) model in predicting the sward 

content of the Irish dataset when firstly pre-trained on the Danish dataset and secondly re-trained on 

the Irish dataset. The performance of the model pre-trained on the Danish dataset had an overall MAE 

of 15.19% and a RMSE of 21.26%. This is primarily because the data distribution for the components in 

the Irish dataset was different to that of the Danish dataset which had a greater number of components. 

When the model was re-trained on the Irish dataset, the performance was improved and had an overall 

MAE of 4.74% and a RMSE of 7.57%. 

Table 2. Performance of the model from (Narayanan et al., 2020) on the Irish dataset. 

Training approach Performance Measure Grass Clover Weeds Overall 

(1) Pre-trained on 
the Danish dataset 

MAE (%)* 20.15 22.29 3.13 15.19 

RMSE (%) 24.87 26.68 5.06 21.26 

(2) Re-trained on 
the Irish dataset 

MAE (%) 6.34 5.09 2.79 4.74 

RMSE (%) 9.71 8.69 4.32 7.57 

*MAE = mean absolute error; RMSE = root mean square error 
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Conclusions 

While there is room to improve these results, they support the hypothesis that machine learning methods 

can be used to predict sward composition and other phenotypes from images, offering an alternative to 

the current time-consuming, expensive, destructive approaches. 
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Abstract 

Remote sensing, especially from unmanned aerial vehicles (UAVs), has gained popularity for monitoring 

grassland growth dynamics over space and time, enabling location-specific management optimization. 

A new generation of LiDAR sensors mounted on UAVs could potentially overcome the drawbacks of 

using optical imaging as the information basis. For this study, a Riegl miniVUX-1 UAV installed on a DJI 

Matrice 600 pro was flown over a cattle grazing experiment. Promising initial results show a moderate 

correlation to rising plate meter measurements. 

Keywords: LiDAR, grassland monitoring, grazing, UAV, laser scanning, grassland 

Introduction 

Determining grassland biomass over leniently stocked, and therefore very heterogeneous pastures 

(Schellberg et al., 2008) is a demanding task (Safari et al., 2016). The precise knowledge of grass 

biomass and its variability within grazing plots is crucial to meet the grazers' feed requirements and 

assess other ecosystem services demanded by the consumer, such as biodiversity and animal welfare 

(Stampa et al., 2020). 

In particular, structure from motion (SfM) analysis of images acquired by unmanned aerial vehicles 

(UAVs) has gained considerable attention as a tool to generate the required geoinformation (e.g., Grüner 

et al., 2019). However, the approach has the disadvantages of being computationally intensive, having 

limited coverage, and multi-temporal acquisitions or a model of the ground are needed. 

A promising alternative could be light detection and ranging (LiDAR) (Jin et al., 2021), which is known 

to be sensitive to the biomass of crops (Ehlert et al., 2008) and grassland biomass (Schulze-Brüninghoff 

et al., 2020). Recent advancements in sensor development allow installing LiDAR scanners on UAVs. 

Such systems could overcome the disadvantages named above and determine the grassland growth 

spatially explicit (Wang et al., 2017). 

The present study demonstrates the feasibility of acquiring a LiDAR point cloud using a UAV-mounted 

LiDAR over the cattle grazing experiment 'Forbioben' in Relliehausen, Germany. 

Materials and methods 

The study site is the experimental long-term cattle grazing experiment 'Forbioben' of the University of 

Göttingen, situated in Relliehausen, Germany (N 51° 46' 56, E 9° 42' 14). It comprises paddocks 

managed in a put and take system according to three stocking rates, each replicated thrice in a 

randomized block design and a paddock size of 1 ha each. The stocking rates vary from moderate, 

lenient, and very lenient based on regular sward height measurements.  

This study's sensor system is a Riegl miniVUX-1 UAV Laser Scanner, with an Applanix-15 inertial 

measurement unit (IMU) integrated on a DJI Matrice 600 pro UAV. The flight campaign was planned 

using the drone mission planning software UgCS, which allowed complete flight automation. The LiDAR 

acquisition parameters are controlled via RiAquire, which is embedded in the LiDAR/IMU system. For 

postprocessing, GPS correction data was logged using the RTK GPS base station TOPCON GR-5 

during the flight. The data was later combined in the POSPac UAV Software to estimate the UAV position 

and orientation with very high precision (~5 cm) throughout the flight. Based on the UAV trajectory's 

precise estimation, a first version of the LiDAR Point cloud can be generated. The UAV's position is then 

further refined using the LiDAR point cloud in RiPrecison software, which is integrated into Riegl's 

processing environment RiProcess. Characteristics of the flight and the resulting point cloud can be 

found in Table 1. 
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Table 1. Flight characteristics and point cloud statistics of the UAV LiDAR flight carried out over the 

Relliehausen test site. 

Date and start time of the flight 30.6.2020, 11:32 am 

Approx. flight time 12 min. 

Flight height: above ground / above mean sea level (min-max) 40 m / 205-275 m 

Flight Speed 5 m/s – 18 km/h 

Flight distance  2.8 km 

Covered area 14 ha 

Distance between scan lines 80 m 

Number of collected points ~15 Million 

Average point density over the test site 84 Pts/m² 

Analysis of the point cloud consisted of classifying the ground points and then normalizing all points to 

height over the ground. Merging of the strips was applied after this step, minimizing the influence of 

potential suboptimal strip alignment to the height above ground value. 

The ground measurements were performed using a rising plate meter (RPM) to determine the 

compressed sward height (CSH) as a productivity proxy. The CSH was determined on 90 geo-

referenced positions distributed over the whole experiment. The measurements' exact location was 

determined with the same TOPCON GR-5 GPS as above, but in Base / Rover constellation, resulting in 

a cm accuracy and matching the point cloud's georeference. 

Results and discussion 

The point cloud's mean height over the ground was calculated in a 1.25 m buffer around the 90 RPM 

measurements. The resulting scatter plot with this mean value and the CSH is shown in Figure 1. It was 

generally possible to relate the LiDAR mean height above ground to the RPM measurements with a 

moderate R² of 0.49. However, as shown in Figure 1, the mean LiDAR height above ground 

underestimates the CSH. The reason for that finding is most likely due to the limited capabilities of the 

LiDAR to penetrate entirely through the grass sward. As an active system, the LiDAR UAV is 

independent of sun-induced illumination, and therefore very flexible considering the acquisition 

environments (Ehlert et al., 2008). Compared to the computational heavy SfM approach (Grüner et al., 

2019), the UAV LiDAR postprocessing computational needs are only a fraction, making it possible to 

have the resultant geoinformation right after the campaign. 

 

Figure 1. Scatter plot of the mean LiDAR height over ground (1.25 m buffer) with the compressed sward 

height, measured with a rising plate meter. 
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Conclusions 

The ability to predict CSH measurements from LiDAR would make it possible to estimate biomass and 

other important grassland properties from one flight and immediately after the flight. Therefore, the first 

investigation of UAV laser scanning shows a high potential to be a valuable grassland cattle 

management tool, but further experiments are needed to explore the capabilities of this approach in 

more detail. 
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Abstract 

Dry savannahs are water-limited and under increasing anthropogenic pressure. Thus, considering 

climate change and the unprecedented pace and scale of rangeland deterioration, we need methods 

for assessing the status of such rangelands that are easy to apply, yield reliable and repeatable results, 

and can be applied over large spatial scales. Global and local scale monitoring of rangelands, through 

satellite data and labour-intensive field measurements respectively, are limited in accurately assessing 

the spatiotemporal heterogeneity of vegetation dynamics to provide crucial information that detects 

degradation in its early stages. Fortunately, newly emerging techniques such as unmanned aerial 

vehicles (UAVs), associated miniaturized sensors and improving digital photogrammetric software allow 

us to transcend these limitations, but they have not yet been extensively calibrated with rangeland 

functional attributes. In our study, we fill this gap by testing the relationship between UAV-acquired 

multispectral imagery and field data collected in discrete sample plots in a Namibian dryland savannah 

along a degradation gradient. The first results are based on a supervised classification performed on 

the ultra-high resolution multispectral imagery to distinguish between rangeland functional attributes, 

with a relatively good match to the field observations. Integrating UAV-based observations to improve 

rangeland monitoring could greatly assist in climate-adapted rangeland management. 

Keywords: arid savannah, degradation gradient, drone, ground-truthing, narrow-band sensor, 

supervised classification 

Introduction 

Land degradation in drylands remains one of the most serious environmental problems (Mansour et al., 

2012), especially because productivity is already constrained by limited moisture availability (Millennium 

Ecosystem Assessment, 2005; Middleton, 2018). Despite their low productivity, their structurally and 

functionally diverse ecosystems serve as habitats for wildlife, are suitable for livestock rearing, play a 

dominant role in carbon sequestration, and support over two billion people (Smith et al., 2019). 

Considering climate change and the unprecedented pace and scale of land degradation, it is crucial that 

methods assessing the status of such rangelands are easy to apply, yield reliable and repeatable results 

and can be applied over multiple spatial and temporal scales to detect degradation in its early stages. 

Extensive progress has been made over the last two decades to integrate multiscale information for 

ecologically relevant observations that accurately map and monitor indicators of vegetation condition to 

provide answers to ecological questions (Lawley et al., 2016; Karl et al., 2017; Díaz-Delgado et al., 

2019; Gillan et al., 2020). Unmanned aerial vehicles (UAVs), better known as drones, with associated 

sensors are receiving increasing attention from the ecological research community for monitoring 

vegetation and other ecosystem components (Assmann et al., 2019; Gillan et al., 2019). However, the 

relevant data processing and analysis methods are still largely ad-hoc, and their application still requires 

standardization and extensive calibration (Gallacher, 2019) if they are to be integrated for long-term 

monitoring. Our study evaluates the applicability of UAV-based multispectral imagery to assess 

rangeland status in a dry savannah along a degradation gradient in Namibia. 

Materials and methods 

As a typical example of dryland systems, the research was conducted in Namibia, the driest country in 

sub-Saharan Africa to assess rangeland condition. A MicaSense Rededge MX sensor 

(www.micasense.com) mounted on a DJI Phantom 3 Advanced (www.dji.com) drone was used to 

acquire imagery along a 1500 m degradation gradient with increasing distance away from a water point. 

The multispectral sensor captures images at 5 spectral bands (Blue – 475@20nm, Green – 560@20nm, 

Red – 668@10nm, Red edge – 717@10nm and Near infrared – 840@40nm), with radiometric 

http://www.micasense.com/
http://www.dji.com/
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calibration achieved through the use of a reflectance calibration panel and irradiance sensor 

(www.micasense.com). The imagery was acquired in January and March 2020 (early and mid-growing 

season respectively) using the Pix4DCapture (www.pix4d.com) flight planning application at 80 m above 

ground level, resulting in a 5.8 cm/ pixel resolution. This ultra-high spatial resolution imagery was 

processed in Pix4DMapper Pro (Pix4D, Switzerland, V3.3) to generate reflectance maps that were 

analysed in Environment for Visualizing Images (ENVI) software, for supervised classification of the 

imagery into three rangeland functional attributes (RFAs) (bare, non-woody plants, and woody plants). 

Field-based assessments using the adapted line-point intercept method (Herrick et al., 2017) to estimate 

the RFAs cover were done in 100 m2 plots along the degradation gradient for ground-truthing. 

Results and discussion 

The UAV estimated proportional cover of the three rangeland functional attributes match relatively well 

with the field-based observations, especially during the early growing season. As expected, plot 1 that 

is closest to the water point has higher proportion of bare ground cover, which declined with distance 

away as the season progressed. During the mid-growing season, the field estimates did not record bare 

ground for plot 5 and 9, largely because observations are bound to sampling points, a limitation that 

may mislead the management of rangelands. This underlines the need to calibrate and integrate the 

rapidly advancing UAV technology, which offers a complete overview of the area of interest with great 

flexibility and sufficient accuracy for rangeland monitoring (Laliberte et al., 2010) and addressing a wide 

variety of ecological phenomenon (Rango et al.,2009; Barnas et al., 2019). 

 

Figure 1. UAV and in situ estimated proportional cover of rangeland functional attributes (RFAs) for early 

and mid-growing season. 

Conclusions 

Based on the preliminary results there seems to be a relatively good match between the field 

observations and the UAV estimated rangeland functional attributes, with the latter method being more 

comprehensive as it is not restricted to observation points. This promising technology offers unbiased, 

more accurate, and efficient means for monitoring the status of rangelands at multiple spatial and 

temporal scales. 
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Abstract 

The objective of this study was to estimate changes in phytocenoses’ floristic composition in different 

parts of a hillslope following 27 years of naturalization after sowing. In 1993 a mixture of perennial 

species was sown on a south-facing slope, soil type Eutric Retisol (slightly eroded). Seed mixture was 

timothy (Phleum pratense) 20%, red fescue (Festuca rubra) 20%, meadow grass (Poa pratensis) 20%, 

white clover (Trifolium repens) 20%, and bird’s-foot trefoil (Lotus corniculatus) 20%. In 2020 the floristic 

composition of the resulting permanent grassland sward was determined. The sward composition 

differed between different parts of the hillslope, and relative abundance of sown species was 16.5, 27.9 

and 28.3% respectively, for the summit, midslope and footslope. There was a good growth of Festuca 

rubra on all parts of the hill, but Trifolium repens had disappeared from the grassland of the midslope 

and footslope. The species that disappeared were replaced by more resistant ones and some new 

species. There was a trend for slightly greater sward production in the footslope of the hill, and lowest 

in the midslope area. 

Keywords: hilly terrain, abandoned meadow, floristic composition, dry matter yield 

Introduction 

The importance of grasslands is closely linked to biodiversity, soil health and erosion control (Lange et 

al., 2015, Bengtsson et al., 2019). Changes in plant diversity reflect the environmental conditions (pedo-

climate) and management practices (mowing, fertilization, grazing, etc.) (da Silveira Pontes et al., 2015). 

In Lithuania, about 19% of agricultural land areas are eroded and in the Zemaiciai Highland this is 35%. 

Under the conditions of hilly relief, plants germinate, grow and develop unequally (Monstvilaitė and 

Kinderienė, 2000). Abandoned grasslands lose biological diversity and their economically valuable use 

as a source of forage. It is important to know which plant species spread in abandoned grasslands and 

what are the perspectives of their use. The objective of the present study was to estimate the changes 

in phytocenoses’ floristic composition in different parts of the hill. 

Materials and methods 

The experiment was carried out at the Vezaiciai Branch of the Lithuanian Research Centre for 

Agriculture and Forestry on the hilly topography of Zemaiciai Highland (latitude 55°577ʹ N, longitude 

22°482ʹ E, 185.0 m above sea level). This study analyses long-term monitoring data of a soil erosion 

experiment set up on slopes of 9-11º steepness. The soil of the south-facing slope was a slightly eroded 

Eutric Retisol. The climate of the study area is transitional between a maritime climate and a continental 

climate. The mean annual precipitation is 816 mm, with a maximum monthly rainfall of about 90 mm in 

August. The mean annual air temperature in the region is 6.3 °C, ranging from -3.4 °C in January and 

February to 17 °C in July. In 1993, to protect the hill from erosion, a grass-legume mixture (Phleum 

pratense L. 20%, Festuca rubra L. 20%, Poa pratensis L. 20%, Trifolium repens L. 20%, and Lotus 

corniculatus L. 20%) was sown in different parts of the hill (summit, midslope, footslope). The grassland 

has not been fertilized or used. Table 1 shows soil properties. 

For plant sampling stationary 21 m2 square plots of 7×3 m have been arranged in each part of the hill. 

Each model plot was split into 3 rectangular replicates (7×1 m) 7 m2. Thirty samples of herbage were 

taken from every model plot and analysed. The location of samples in a model plot was chosen 

randomly. The experimental area was cut twice in 2020 (mid-June and end of July). Dry matter (DM) 

yield was measured at each harvest in fixed areas of 0.25 m2 in four positions for every plot. Botanical 

composition of the sward was determined before the first cut. 
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Table 1. Agrochemical and physical properties of the soil (0–15 cm) in 2020. Mean values ± standard 

error. The average soil moisture was determined during plant growing season. 

Soil properties Parts of the hill Methods 

Summit Midslope Footslope 

Soil pHKCl 5.6±0.20 6.2±0.16 5.0±0.05 Potentiometric method 

Total N, % 0.114±0.00 0.137±0.01 0.132±0.00 Kjeldahl method 

Mobile P mg kg-1 20.3±2.96 31.0±9.24 11.3±2.05 Egner-Riehm-Domingo (A-L) 

Mobile K mg kg-1 162.7±15.6 158.9±21.3 200.9±17.00 Egner-Riehm-Domingo (A-L) 

Soil moisture, % 22.4±3.2 22.2±1.6 27.2±5.9 Weight method 

The index of relative abundance of species (P%) expressed in percent was used in this work (Peeters, 

1989). The formula is as follows: 𝑃% =
𝐹%

∑𝐹%
× 100, 

where F% is the frequency of occurrence of every species: 𝐹% =
𝑛

𝑁
× 100, 

where n is the number of samples, in which species were found; N is the total number of samples in a 

model plot; ∑𝐹% is the sum of frequencies of occurrence of all the plant species in a model plot. 

Statistical analysis of DM yield data was carried out using ANOVA. 

Results and discussion 

Diverse competition of different plant species stimulated spontaneous naturalization processes in the 

grassland. In total, in sown permanent grassland we identified 42 vascular plants species belonging to 

15 families. Asteraceae (10 species) and Poaceae (8 species) were the dominant plant families. The 

greatest number of species were found at the summit area of the hill. Relative abundance of sown 

species was 16.5, 27.9 and 28.3% respectively, in the summit, midslope and footslope of the hill. 

Festuca rubra was the phytocenose-forming dominant species in the midslope and footslope, but it 

remained in all parts of the hill (P% = 15.1, 23.0 and 20.6, respectively, in the summit, midslope and 

footslope of the hill) (Table 2). 

Table 2. The yield (Mg ha-1 yr-1) and phytocenoses’ floristic composition in different parts of the hill. LSD: 

least significant difference. F%: frequency of occurrence of every species P%: relative abundance of 

species. 

 Summit Midslope Footslope 

Number of species 29 24 25 

Yield: 1st cut / 2nd cut. LSD05 1.704 / 0.716 2.00 / 1.83 1.08 / 2.07 2.06 / 2.01 

 F% P% F% P% F% P% 

Festuca rubra 1 66.7 15.1 93.3 23.0 96.7 20.6 

Phleum pratense 1 - - 13.3 3.3 6.7 1.4 

Poa pratensis 1 - - 3.3 0.8 6.7 1.4 

Agrostis stolonifera 13.6 2.9 3.3 0.8 10.0 2.1 

Alopecurus pratensis - - 3.3 0.8 - - 

Dactylis glomerate 43.3 9.4 26.7 6.5 60.0 12.7 

Elytrigia repens  43.3 9.4 70.0 17.1 23.3 4.9 

Festuca pratensis 36.7 8.0 3.3 0.8 - - 

Festuca ovina 3.3 0.7 - - - - 

Total Poaceae  45.5  53.1  43.1 

Lotus corniculatus 1 3.3 0.7 3.3 0.8 23.3 4.9 

Trifolium repens1 3.3 0.7 - - - - 

Vicia cracca 66.7 14.5 20.0 4.5 80.0 16.9 

Vicia sepium - - 16.7 4.1 26.7 5.6 

Total Fabaceae  15.9  9.4  27.4 

Total other species   38.6  37.5  29.5 

Low agronomic value plants  26.7  31.0  12.6 
1 sown species 
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Lotus corniculatus is intolerant of shading and therefore could not compete well with Poaceae species 

and was grown over (P% = 0.7, 0.8 and 4.9, respectively, for the summit, midslope and footslope of the 

hill). A small amount of Lotus corniculatus was found in the summit and midslope of the hill, its frequency 

was greatest in the footslope with more moist soil. Trifolium repens disappeared from the grassland of 

the midslope and footslope, and Poa pratensis and Phleum pratense disappeared from the grassland 

of the summit. Relative abundance of low agronomic value species (Elytrigia repens, Cirsium arvense, 

Equisetum arvense, Rumex crispus) was 26.7, 31.0 and 12.6% respectively, in the summit, midslope 

and footslope of the hill. DM yields of the first and the second cut of abandoned grassland was poor 

(3.15-4.07 Mg ha-1 yr-1). In the footslope of the hill, with more favourable environment and nutrition 

conditions for plants (Table 1), the yield was determined to be greater by 6.3-29.2% compared to other 

parts of the hill, but the differences were not significant (Table 2). 

Conclusions 

The different parts of the hill (summit, midslope and footslope) showed different effects on the floristic 

composition of the meadow, indicating that naturalization processes affected different areas of the slope 

unequally. Due to better soil nutrient status and moisture conditions the meadow was more productive 

in the footslope of the hill, and was the least productive in the midslope of the hill. Plant species of low 

agronomic value (Elytrigia repens, Cirsium arvense, Equisetum arvense, Rumex crispus) were 

increasingly becoming established in the summit and midslope areas of the hill, indicated the beginning 

of sward degradation. 
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Abstract 

The aim of the research was to assess the possibility of using nanosatellite images to identify chosen 

plant communities in the areas of pastures grazed by Hutsul horses. The surface cover is dominated by 

grasses, and the species composition includes herb and weed communities. Plant communities were 

mapped in the field using the Braun-Blanquet approach and then matched with the PlanetScope 

nanosatellite images. In particular, for mapped communities we created the temporal profiles of selected 

vegetation indices. The obtained results are encouraging, showing possible use high-resolution satellite 

imagery as a tool to support more effective management of grazed areas. 

Keywords: grazing, multispecies sward, high-resolution satellite images, vegetation indices 

Introduction 

Grazing animals provide the best way for utilizing permanent grassland. Pastures are characterized by 

having a rich flora and fauna, and therefore are of great importance in maintaining biodiversity in 

agricultural areas. Apart from the production importance, grasslands fulfil numerous ecological functions 

in the natural environment. The subject of the research reported here is the analysis of the occurrence 

of diverse plant communities in the selected area of the Low Beskids, near the border with Slovakia. 

The actual vegetation, which is the result of grazing by Hutsul horses, is presented. This area is 

floristically complex and for this reason we wanted to answer the question of whether the data from the 

PlanetScope Dove satellite are useful for fast and effective detection of variation and changes in plant 

cover. 

Materials and methods 

Plant communities were mapped in the field during the 2018 vegetation season. The study covered an 

extensively used pasture with an area of 111 ha. Larger areas of undesirable plants as well as desirable 

grazed communities were mapped using GPS and aerial orthophotomap. In our research we used the 

PlanetScope Dove nanosatellite images. PlanetScope satellite constellation offers daily acquisition of 

high-resolution multispectral images. Newly deployed sensors have five spectral channels. However, 

for time period adopted in this study, defined as 1 April till 31 October 2018, only 4-channel images (blue 

- B, green - G, red - R, near-infrared - NIR) were available. We used cloud-free atmospherically corrected 

satellite ortho images with spatial resolution of 3.125 m. Plot size ranged from 0.12 a to 3.97 ha. The 

images were acquired using Planet API (Planet Team, 2017). 

For mapped communities we created the temporal profiles of several vegetation indices reported as 

useful in other studies of grasslands Lin et al., 2019; Pasqualotto et al., 2019). 

For every image we calculated: 

• Near-infrared Reflectance of Terrestial Vegetation (NIRv) defined as (NIR-R)/(NIR+R) * NIR 

(Badgley et al., 2017), 

• Green Chlorophyll Index (CIg) defined as (NIR/G)-1 (Gitelson et al., 2003), 

• Chlorophyll Vegetation Index (CVI) defined as (NIR/G)*(R/G) (Vincini et al., 2008). 

Based on indices images we created temporal profiles. The means of index values for each date were 

calculated based on pixels within areas mapped as covered by particular community. Pixels situated 
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closer than 5 m from the shape border were excluded from calculations. The numbers of pixels (3.125 

x 3.125 m) used for averaging the values of remote sensing indices for mapped communities were: 

Calamagrostis epigeios – 26, Prunus spinosa – 587, Menthea longifolia – 420, Cirsium – Carduus – 

1309, Urtica dioica – 75, Rudbeckia lanciniata - 12, Petasitetum kablikiani – 21, other (desirable grazed 

communities) – 4071. The simply distance-based separability measure, M-statistic (Swain and Davis, 

1978), was used to evaluate possible separability between plant communities. 

Results and discussion 

Based on created temporal profiles of vegetation indices (Figures 1-3) we can make several 

observations. First, we can see that Calamagrostis epigeios differs from other communities in the case 

of NIRv and gives the lowest values for almost entire growing season. The only exception is the image 

from 4 August when lower values were observed for Rudbeckia lanciniata and Cirsium – Carduus as a 

possible cumulative effect of grazing, nursing mowing of leftovers and drought (it is worth noting that 

these two communities have very similar courses of temporal profiles of every investigated index). 

 

Figure 1. Temporal profile of NIRv values. 

 

Figure 2. Temporal profile of CIg values. 

 

Figure 3. Temporal profile of CVI values. 
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Secondly, the NIRv values of Petasitetum kablikiani are the highest ones for May, June and July. The 

same is observed for CIg and CVI indices; however Urtica dioica profiles also show a similar course. A 

third important observation is that for the remaining considered indices in June and July the profiles of 

desirable grazed plants are distinguishable from the undesirable ones. Their values are lower than 

values averaged for mapped undesirable plants. 

Conclusions 

Based on this preliminary study we assume that it is possible to use high-resolution satellite imagery as 

the support for more effective management of grazed areas.  In our opinion, the reported study shows 

there is potential for PlanetScope Dove images for use in mapping desirable and undesirable plant 

communities within grazed areas. As the next step of our research we plan to evaluate the accuracy of 

automating classification done for such purpose. 
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Abstract 

Peatland functions as an essential ecosystem that stores carbon and prevents flooding by retaining 

water. Monitoring of peatlands, based on remote sensing, assists in the ecological service provision for 

grassland and agricultural use. Soil moisture plays an important role during the hydrological cycle, and 

EFTAS has developed a novel approach using multi-temporal Sentinel-1 images to evaluate, model, 

and predict the soil moisture. Our initial test in a peatland shows promising results. The Pearson 

correlation coefficient between the soil moisture estimated by our model and the in-situ data is up to 

0.93. We have created forward models to predict soil moisture. The lowest absolute mean error is 3.63% 

(volumetric water content). This work is part of the interdisciplinary research project BEWAMO funded 

by German Federal Ministry of Food and Agriculture. 

Keywords: soil moisture, advanced DInSAR, time-series analysis, Sentinel-1, peatland 

Introduction 

German peatlands are widely used as grasslands. Due to intensive drainage for agricultural purposes 

the former waterlogged peat layer has decomposed by aerobic microorganisms, resulting in enhanced 

emissions of greenhouse gases (Tiemeyer et al., 2016). Drainage has also lead to subsidence 

processes of the peat layer to a point where a site is no longer classified as peatland. It is not only the 

observation of long-term subsidence of the peat layer that is important in monitoring peatlands; 

oscillations within the peat layer may also occur over the year due to shrinkage and swelling processes 

as a result of water loss and replenishment during the drier and wetter seasons. Imaging RADAR from 

Sentinel-1 constellation satellites can be used to monitor these movements and their spatial distribution 

on short time scales based on repeated distance measurements. Statistical analysis shows that these 

short-term fluctuations in thickness are significant and strongly related to soil moisture in the peat layer. 

Materials and methods 

Our forward model is built via regression to evaluate soil moistures from SBAS-derived movements near 

the ground surface (Figure 1).  

 

Figure 1. Forward model by regressing soil moisture on time-series movement derived from Sentinel-1 

images by SBAS (Berardino et al., 2002). 

The soil moisture in 5 cm is measured as volumetric water content (%) each day every 6 hours by a 

Decagon 5TM sensor. Here we used only the data measured at 6 pm, close to the acquisition times of 

the Sentinel-1 images. We estimated the surface movement from Sentinel-1 images via SBAS 
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(Berardino et al., 2002). The forward model will be refined after the first regression. Some inputs, i.e., 

pairs of movements and moisture readings, are thus removed in the second regression if their residual 

errors exceed a certain tolerance. This step will be iterated until all the residual errors are below the 

defined threshold. Finally, a forward model is generated for local use. 

Our test site is a grassland located in the Rhinluch area around 50 km northwest of Berlin. This area is 

characterized by a homogeneous vegetation cover, soil type, and water content. Sensors were installed 

by the Division of Soil and Site Science at Humboldt-Universität zu Berlin to measure the soil moisture 

each day every 6 hours from mid-November 2019 to mid-May 2020. 

Results and discussion 

Our approach implemented SBAS processing to compute the surface movement of the test areas. Here 

only the VV-polarized Sentinel-1 images were used. The resultant cumulative movement series along 

line of sight are averaged within the test grassland (Figure 2). The PCC to the measured soil moistures 

is 0.91, which is sufficiently high to validate the core assumption in our modelling. We predicted the soil 

moistures via the forward model (Figure 2). The mean absolute error to the ground truth data is 3.15% 

during the measurement period of 6 months. Overall, we believe our modelling is ready for local end 

use, at least for those sites similar to ours, i.e., low vegetation cover plus organic soils. We will adapt 

our approach for different site conditions, e.g., dense vegetation cover or inorganic soil body. Under 

these conditions the soil moisture data might not be captured in a way we have assumed. 

 

Figure 2. Comparison of soil moisture and SBAS-derived movement at test site. Movement: negative 

and positive, away and towards Sentinel-1 antenna (Berardino et al., 2002). Sample dates correspond 

to Sentinel-1 acquisitions. 

Conclusions 

Our novel approach is able to evaluate the time-series soil moisture of a certain region from multi-

temporal spaceborne SAR images. We have tested it using Sentinel-1 images in the grassland of 

organic soil within State of Brandenburg, Germany for a 6-month period. The PCC between the 

measured soil moistures and the DInSAR-derived movements is 0.91. The soil moisture values 

predicted from the forward models were compared with the measurements. The mean absolute error 

(volumetric water content %) is 3.15%. The absolute accuracy is relevant considering that the actual 

moistures dropped by around 30% in 6 months. Overall, we believe our modelling is ready for local end 

use, at least for those sites featuring low vegetation cover plus organic soils. 
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Abstract 

The 'European Monitoring of Biodiversity in Agricultural Landscapes' project (EMBAL) is an initiative 

launched by the European Commission (DG Environment) which aims to provide a harmonized pan-

European overview about the state and changes of biodiversity in agricultural landscapes. On the basis 

of the first EMBAL study (Oppermann et al., 2018) and its preceding project LISA (Oppermann et al., 

2021) a recent contract has been assigned between 12/2019 and 10/2021 in order to consolidate and 

operationalize the achieved survey methodology, while proving its practical feasibility and statistical 

efficiency via dedicated pilot surveys on 250 sites across four bio-geographic regions within the EU. 

With the consolidation of the methodology and the technical workflow, this pilot project prepares the 

emphasized EMBAL rollout in the EU, aiming to contribute to a number of EU environmental policies 

(e.g. EU Biodiversity Strategy for 2030, EU Common Agricultural Policy, EU Pollinators Initiative) and to 

monitor their implementation and effectiveness. 

Keywords: biodiversity, agriculture, EU, landscape, monitoring 

Introduction 

European agricultural and environmental policies are increasingly challenged with providing sufficient 

results in terms of maintaining and enhancing biodiversity, especially in agricultural landscapes. 

Agricultural policy is the biggest policy sector in the EU and the greatest decline in biodiversity has been 

in agricultural landscapes (e.g. compared to forests and settlements). However, until now a European-

wide monitoring approach for the ecological quality of agricultural landscapes is missing. Therefore, the 

EMBAL approach has been developed and its aim is to fill the gap between very detailed but small-

scale information on biodiversity on the one hand side, and robust but meaningful harmonized 

information on farmland biodiversity and its change at a large scale on the other hand. 

Materials and methods (Description of the EMBAL approach) 

For each EU member state a significant number of EMBAL plots needs to be investigated in the field in 

a regular perennial repetition rate. It is based on a three-survey level (see Figure 1): 

1. EMBAL plot (500 x 500 m) 

Recording unit with 500 x 500 m edge length (25 ha), arranged in a regular grid of 2 x 2 km across the 

EU-27 Member States, based on the LUCAS master sample grid (Eurostat 2019). 

2. Parcels and landscape elements 

Within each EMBAL plot, all agricultural parcels and linear landscape elements are delineated and 

described by recording a basic set of parameters, such as land cover and land use, number and colours 

of flowering forbs, coverage of crop and wild plants on arable land or vigour and graminoid-forb ratio on 

grassland. 

3. Vegetation transects 

Each plot contains up to 9 vegetation transects, whose position is determined by 5 regularly arranged 

identification points. Vegetation transects are 20 m in length and 2.5 m wide and surveyed in pairs – 

one at the field margin, and one in the field interior. They are only observed in either grassland or 

cropland. Here, more detailed parameters, such as the presence of plant indicator species (key species), 

different vegetation layers or number of flowering forbs and their density will be recorded (Oppermann 

et al., 2017). 
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Figure 1. Example of an EMBAL plot (Location: Aschbach, Saarland [NUTS1], DE) 

Results (Implementation of the EMBAL pilot study) 

The technical implementation of this project addresses four technical aspects. The first task is the 

methodological review and consolidation of the achieved survey approach, while exploring synergies 

with other European initiatives such as the Land Use / Cover Area Frame Survey (LUCAS) (Eurostat 

2019) and satellite earth observation-based services as from the EU Copernicus framework (EEA 2021). 

The second task is to establish a digital data collection workflow by means of open source tools. The 

third task is the execution of pilot surveys across four biogeographic regions. The fourth task is to assess 

statistical efficiency and demonstrate the added value of EMBAL information by means of selected use 

cases. 

From these technical specifications, the following should be highlighted: 

1. All parameters from EMBAL 2017 have been thoroughly evaluated and enhanced. The pollination 

potential is taken into account through the assessment of flowering species, their density and their 

distribution. Emphasis is also put on synergy effects with the established statistical field survey LUCAS 

(Eurostat, 2019). Here EMBAL makes use of the LUCAS 2 x 2 km master grid and considers the 

comparability of parameters such as land cover in general, and in particular in relation to the new LUCAS 

Grassland module 2018. 

2. The EMBAL method and approach are tested and validated in pilot surveys in 2020 (DE) and 2021 

(ES, RO & AT) on 250 plots, and provide results from 4 different biogeographical regions and diverse 

agricultural cultivation forms and intensities across the EU. 

3. EMBAL is faced with great challenges in terms of technical preparation, implementation in the field 

and the preparation and consolidation of tabular and spatial data after survey. Therefore, a digital 

workflow was developed, which takes into account the complexity required, and is based on open source 

components (Kobs and Kleinewillinghöfer, 2020). 

4. Evaluations of statistical significance regarding changes in biodiversity parameters and comparisons 

between regions are ongoing, as well as the calculation of statistically robust sample sizes (power 

analyses) for plots and transects. They form the basis for the calculation of a sample of a later EU-wide 

rollout (Moser, 2020). 
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5. External expert consultation is essential for future applicability of EMBAL. For this reason, two expert 

workshops take place, of which the first was already implemented with participants from various EU and 

non-EU institutions, which are closely related to the fields of environmental monitoring and remote 

sensing (Haub et al., 2021). 

Outlook 

During the period of the EMBAL pilot study the second workshop is scheduled for 6 May 2021. Its aim 

is to consult with relevant authorities from the EU Member States regarding the enhanced and future 

applications of the EMBAL methodology. 

An outlook for opportunities and recommendations for an expansion of EMBAL to a Pan-European long-

term monitoring system will be provided to derive spatially extensive information about the biodiversity 

of agricultural landscapes within Europe. Results of a double blind between non-botanical experts and 

botanists will be presented at the conference. 

Different scenarios for a sampling design of EMBAL will be identified in order to use it as input and 

validation data to derive remote sensing products from Copernicus satellite data, and to assess the 

added value to use the EMBAL field data in combination with the LUCAS dataset to derive valuable 

information for the implementation of EU Pollinators Initiative and the Green Infrastructure strategy. 

Conclusions 

The interim results indicate that EMBAL will be a unique and powerful tool to monitor biodiversity in 

European agricultural landscapes and particularly to evaluate how far and if European legislations and 

measures to preserve and regenerate the natural resources and nature capital are effective. 

With the recorded species groups, additional environmental and structural parameters, and the different 

spatial components of EMBAL, it becomes possible to generate objective information for nature value 

and biodiversity to evaluate the impact of agri-environmental policies, since there are no comparable 

data for this at EU level to date. 
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Abstract 

Movement and foraging behaviour of grazing livestock strongly respond to pasture vegetation while 

being major drivers of grassland biodiversity. However, many underlying processes of these interactions 

are scarcely understood. In this article we focus on how animal-borne sensors can close this knowledge 

gap. We conducted three grazing experiments on heterogeneous pastures in the Swiss Alps. GPS-

trackers, pedometers, nose-band chewing sensors and head-collar accelerometers were fitted to cattle, 

sheep and goats. Sensor data were combined with classical vegetation surveys. We found that (1) 

animal-borne sensors allow for monitoring activities of grazing animals continuously, objectively and 

without disturbing their natural behaviour; (2) sensors can monitor processes not directly observable by 

humans or aerial systems but sensed by livestock; (3) the high temporal and spatial resolutions allow 

for new algorithms of data interpretation. Combining these advantages of animal-borne sensors with 

classical measurements revealed novel ecological relationships of livestock behaviour and vegetation 

diversity. For instance, we disentangled interactions of cattle movement behaviour, their spatial 

distribution, anatomy, trampling pressure, plant trampling-adaptation and pasture vegetation and 

diversity. Animal-borne sensors indicate the underlying ecological processes of pasture parameters and 

not only their status quo, and thereby enable a holistic research approach into grassland systems. 

Keywords: animal-borne sensors, GPS, pedometer, chewing sensors, herbivore-pasture interaction 

Introduction 

Modern sensing technology observes numerous processes in grassland. However, for pastures there is 

a lack of information, as they are not only influenced by climatic, edaphic and topographic factors but 

also substantially by herbivores. Grazers shape pasture vegetation and biodiversity by selective 

defoliation, trampling, nutrient translocation and even seed dispersal (Pauler et al., 2019). Inversely, 

pasture forage quality, plant species composition and terrain influence animal behaviour. Common 

grassland sensing methods focus on the vegetation site of these fundamental interactions and thus, 

important ecological relationships are often overlooked in pasture sensing. Applying animal-borne 

sensors, the animal itself provides in-situ insights in the ecosystems parameters. Many ecological 

processes and relationships are not detectable without the animal – especially on heterogeneous 

pastures. However, the use of animal-borne sensors requires a thorough handling and interpretation to 

achieve meaningful results. This article demonstrates that animal-borne sensors are a valuable addition 

to classical grassland research focusing on vegetation parameters. We discuss opportunities and 

challenges encountered in several field studies. 

Materials and methods 

We refer primarily to three field experiments conducted on heterogeneous, (sub-)alpine pastures in the 

Swiss Alps (Homburger et al., 2015, 2014; Pauler et al., 2020a, 2020b) (plus a third study not yet 

published). Grazing behaviour of cattle, sheep and goats was observed applying various sensors (Table 

1). Sensor data were combined with vegetation surveys, chemical analysis of soil and forage, other 

grassland sensing methods (e.g., calculating vegetation height based on drone pictures) and anatomical 

measurements (e.g., weight, claw size). Behavioural states in space and time were classified 

automatically. The accuracy of both sensor output and classification was validated against visual 

observations in the field. 

Results and discussion 

In our studies, animal-borne sensors disentangled numerous ecological relationships of livestock 

behaviour and vegetation diversity (Table 1). For instance, using GPS and pedometers we were able to 

identify drivers of animals' spatial distribution and movement intensity (Homburger et al., 2015; Pauler 
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et al., 2020a). The movement behaviour was influenced by terrain (e.g., avoidance of steep slopes) as 

well as the forage on offer (e.g., preference of nutrient-rich areas; fewer steps in high forage quality 

paddocks). However, the herbivore-grassland relationship is reciprocal: by combining sensor data with 

vegetation surveys, we found that plant species richness and the proportion of trampling-adapted 

species are influenced by the movement and foraging behaviour of animals (Pauler et al., 2019). 

Combining different sensing methods and classical surveys enlarges the knowledge gain considerably. 

Table 1. Overview of pasture-relevant, animal-borne sensors, their output, the challenges to be 

considered and the ecological questions that can be answered by interpreting sensor output. All sensors 

provide temporal assignment and thus allow integration of different devices. 

Sensor Output Challenges Interpretation Underlying 
process 

GPS logger Position Insufficient accuracy due to 
shading; 

Insufficient robustness; 

High energy demand 

Distance covered; 

Spatial distribution; 

Activity classification: 
resting, foraging, walking 

Location of 
defoliation and 
nutrient deposition 

Pedometer Step 
frequency + 
intensity 

Black-box data; 

Comparable only for animals of 
similar size 

Movement intensity; 

Activity classification: 
lying, walking 

Biomass and soil 
compaction 

Nose-band 
chewing 
sensor 

Bite rate + 
intensity; 

Rumination  

Automated classification difficult 
or relying on black-box software; 

Error-prone at low temperatures  

Activity classification: 
foraging, rumination 

Amount of 
defoliation 

Head-collar 
accelerometer 

Position of 
the head 

Automated classification difficult 
or relying on black-box software 

Activity classification: 
foraging, browsing 

Structure of 
defoliation (herbs 
vs. woody) 

Under-chin 
cameras* 

(Motion) 
pictures 

Difficult automated classification; 

Identification of individual forage 
plant species not always possible 

Activity classification: 
resting, foraging, 
browsing, rumination, 
walking, interaction 

Selective foraging 
(species identity, 
developmental 
stage of forage) 

* Not applied in the studies presented, but with high potential (e.g., de la Rosa, 2019). 

 

 

Figure 1. One example of combining classical vegetation survey and animal-borne sensors. Sheep 

grazed subalpine pastures partially covered by Alnus viridis stands (hatched). They prefer flat over steep 

slopes and open pasture over shrub stands, but when entering the stands, debarking intensity is a 

function of sheep occupancy. Debarking recreates open pastures and the more the thickets are thinned, 

the greater the species richness. 
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Another reciprocal interaction we could demonstrate was for nutrient flux: animal-borne sensors 

demonstrated that the spatial distribution of animals is more even during foraging than on average. 

Thus, animals ingest nutrients from all over the pasture, but mainly deposit them at only a few resting 

places, as confirmed by dung sampling (Koch et al., 2018). Thus, livestock change the competitive 

conditions and thereby alter vegetation composition. Vegetation surveys show a high share of 

nitrophilous plants where animals rest. In return, the higher nutrient content affects livestock spatial 

distribution. 

Animal-borne sensors record activities of grazing animals continuously, objectively and without 

disturbing the natural behaviour. Sensors can thereby monitor processes not directly observable by 

humans but sensed by the animal. However, meaningful results of animal-borne sensors depend on 

adequate handling and interpretation. Both can be challenging: (1) accurate fitting of sensors is time-

consuming and error-prone, especially if sensors and halters were not developed for the species or 

breed of interest; (2) animal interactions and outdoor conditions can damage sensors, and since most 

devices were developed for in-house deployment, they need careful adaptation and testing in harsh 

environments; (3) assessing and validating the accuracy of data is crucial; (4) automatized behaviour 

classification is mandatory for large datasets but requires advanced programming skills. Alternatively, 

one has to rely on black-box classification of commercial software; (5) measurement uncertainty and 

the spatiotemporal autocorrelation of sensor data need to be accounted for in data analysis. 

Conclusions 

Many parameters of interest in pasture grassland research (e.g., nutrient deposition, trampling impact, 

vegetation reaction) depend on herbivore-pasture interactions. Classical grassland sensing usually 

measures a status quo of these parameters (e.g., nutrient content, vegetation composition) and thus it 

focuses on only one site of a complex interaction. Combining these methods with animal-borne sensors 

facilitates the understanding of underlying ecological processes (e.g., nutrient intake and excretion, 

movement behaviour, forage selection). Thereby, animal-borne sensors enable an holistic research 

approach into grassland systems. 
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Abstract 

European meadow bird populations are declining. In the Netherlands, particularly the black-tailed godwit 

and lapwing show reduced breeding success and limited chick survival because of increased predation, 

urbanization and agricultural intensification. In order to increase breeding success and chick survival, 

farmers are compensated for implementing conservation measures, including delayed first harvest until 

1, 8 or 15 June. These measures help to create a period of rest with enough shelter against predators 

and sufficient food availability for the chicks. However, this delayed harvest results in a heavy grass 

crop, which limits chick mobility and feeding success, but also negatively affects forage quality and 

regrowth. In the current experiment we tested the effect of pre-grazing until 1 or 8 May on the yield, 

sward density (% cover at soil surface) and nutritive value of the grass harvested at a delayed harvest. 

Pre-grazing significantly reduced the average herbage dry matter (DM) yield from 7 t ha-1 to 4.6 and 3.2 

ton DM ha-1 (1 and 8 May, respectively). The sward density after the delayed harvest was 18% higher 

with pre-grazing, and both the energy and protein content were higher. In conclusion, pre-grazing is a 

good tool to prevent some of the problems associated with delayed harvests under meadow bird 

conservation management. 

Keywords: grazing, meadowbird conservation, sward density, herbage yield, nutritive value 

Introduction 

European meadow bird populations are declining. In the Netherlands, particularly the black-tailed godwit 

and lapwing show reduced breeding success and limited chick survival because of increased predation, 

urbanization and agricultural intensification. In order to increase breeding success and chick survival 

farmers are compensated for implementing conservation measures, including delayed first harvest until 

1, 8 or 15 June. These measures help to create a period of rest with enough shelter against predators 

and sufficient food availability for the chicks. However, this delayed harvest often results in a heavy 

grass crop, which limits chick mobility and feeding success, but also negatively affects forage quality 

and regrowth. In order to prevent these problems, there are also conservation measures in which 

farmers are allowed to graze these fields until 1 or 8 May, followed by a rest period of 4 to 6 weeks. The 

objective of the current experiment was to assess the effect of pre-grazing until 1 or 8 May on the yield, 

sward density and nutritive value of the grass harvested at a delayed harvest. 

Materials and methods 

In 2018 we carried out a plot experiment in which we tested the effect of delayed harvest (1, 8 or 15 

June) without grazing (NG) or with grazing until 1 or 8 May (G-1/5, G-8/5), resulting in 8 treatments (see 

Figure 1). The experiment was conducted in a perennial ryegrass-dominated sward at the Knowledge 

Transfer Centre Zegveld, which is situated on drained peat soil. The plots were 3 x 7 m and placed 

within a grazing trial (5 LU / ha) in 8 replicate blocks. All plots received 25 m3 cattle slurry at the end of 

March. Additionally, after the first cut the plots received 155 kg N/ha in the form of calcium ammonium 

nitrate divided over 3 cuts. During each of the four cuts the dry matter yield (DMY) and nutritional value 

was determined by cutting the plots to 6 cm height using a Haldrup plot harvester. Grazing started on 

15 April and residual sward height was on average 6.5 cm. The grass growth and dry matter during 

grazing was estimated based on weekly grass height measurements under 1.5 x 4 m grass cages in the 

grazing area adjacent to the plots. On 15 June the sward density cover at soil surface was determined 

using the point quadrat method (Hoekstra et al., 2019). ANOVA was carried out to assess the treatment 

effect on DMY, sward density and nutritional value. 

Results and discussion 

There was a significant (P<0.001) treatment effect on the DMY of the first cut. The DMY without grazing 

ranged from 6.7 on 1 June to 7.3 t ha-1 on 15 June (Figure 1). The grazed plots had a significantly 
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(P<0.001) lower DMY at cut 1: on average 4.6 and 3.2 t DM ha-1 for grazing until 1 May and 8 May, 

respectively. This shows that grazing was an effective way to reduce the heaviness of the grass crop at 

delayed harvest. However, under the conditions of spring 2018, grazing until 1 May still resulted in a 

DMY of 4.6 t DM ha-1, which is still very high in relation to chick mobility. This highlights the need to also 

minimize the fertilization rates on these fields with a relatively intensive management history. 

The high herbage yields of the first cut had a negative effect on sward density and regrowth (Figure 1b). 

The sward density ranged from 31% (no grazing, date first cut 15 June) to 70% (G-1 May, date first cut 

1 June). A delay in cutting from 1 June to 15 June resulted in a decrease in sward density of on average 

30% points, whereas grazing until 1 May and 8 May (compared to NG) resulted in an increase in sward 

density of 10 and 18% points, respectively. 

  

Figure 1. The effect of grazing (NG = no grazing, G 1/5 = grazing until 1 May, G 8/5 = grazing until 8 

May) and cutting date of the first cut (1/6, 8/6 and 15/6) on a) the herbage dry matter yield of the first 

cut, and cut 2-4 and the herbage uptake during grazing and b) the sward density (% cover at soil surface) 

measured on 15 June. Error bars are 2×SE, n=8. Different letters above bars indicate significant 

differences (P < 0.05) in (a) the herbage DMY of Cut 1 and (b) sward density. 

The DMY of the regrowth (cut 2-4, Figure 1a) was significantly higher when plots had been grazed: on 

average 4.5, 7.0 and 7.3 t DM ha-1 for NG, G-1/5 and G-8/5, respectively. The cumulative herbage yield, 

including the estimated uptake during grazing was on average 11 t DM ha-1 and not significantly affected 

by the treatments. 

Table 1. The effect of grazing (NG = no grazing, G 1/5 = grazing until 1 May, G 8/5 = grazing until 8 

May) and cutting date of the first cut (1/6, 8/6 and 15/6) on the energy content (VEM) and crude protein 

content of the herbage harvested during the first cut.  

  VEM (g kg-1 DM)   Crude protein (g kg-1 DM) 

 
Date of first cut 

 
Date of first cut 

Grazing 1 June 8 June 15 June   1 June 8 June 15 June 

NG 737   b* 684   a 657 a 
 

117 ab 112 ab 103     a 

G-1/5 826 cd 783 bc 764 b 
 

143 cd 130 bc 125 abc 

G-8/5   845   d 835 d   
 

160 de 147   cd 

Delaying the harvest date of the first cut had a strong negative effect on the energy (VEM = net energy 

for lactation) and protein content of the herbage harvested during the first cut. At 15 June VEM was only 

657 and CP only 103 g kg-1 DM, a reduction of -29% and -39% in comparison to the nutritional value at 

a regular harvest date (15 May, 927 VEM and 169 CP). This decrease in nutritional value was partly 
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compensated by grazing: for the delayed harvest at 15 June, VEM was 835 g kg-1 DM and CP 147 g kg-

1 DM when plots were grazed until 8 May. 

Conclusions 

Grazing was an effective way to reduce the DMY of the delayed harvest and thus possibly improve the 

habitat quality for meadowbird chicks, by reducing the negative impact of a heavy grass crop on chick 

mobility. In addition, grazing reduced the negative effects of the delayed harvest on sward density, 

herbage regrowth and herbage quality of the first cut. However, spring grazing by itself was not sufficient 

to reduce the herbage biomass in all cases, and it is also important to minimize fertilization on these 

fields. Care should always be taken to avoid disturbance of nests and chicks by grazing animals. 
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Abstract 

Based on a Delphi study, six innovative management options were assessed with regard to their 

feasibility and potential effects on the delivery of ecosystem services (ES) for the Swiss alpine region: 

(i) complete sward renewal through sward destruction and reseeding, (ii) virtual fencing, (iii) overseeding 

with different grass or legume species or mixtures without complete sward destruction, (iv) practical use 

of rising plate meter for yield estimation, (v) biodiversity management, and (vi) weather and grass growth 

monitoring to improve grassland management. We found that sward renewal has negative effects on 

biodiversity, carbon storage, flood control, prevention of soil erosion and prevention of loss of organic 

matter and therefore should not be applied in the Swiss alpine regions. Rising plate meters and grass 

monitoring have a positive effect on grass production without any negative consequences on other ES. 

Biodiversity management fits perfectly under the Swiss alpine conditions, in particular when farmers are 

compensated for their economic loss. 

Keywords: Delphi-study, sward manipulation, grazing management, farm-scale management, 

monitoring grass growth 

Introduction 

Grasslands provide a wide range of ecosystem services (ES) (Bengtsson et al., 2019; Zhao et al., 2020) 

including provisioning services such as forage production, regulating and supporting services such as 

soil carbon storage, erosion control or pollination and cultural services (Huber et al., 2020). Climate 

change and changes in land use intensities affect the functioning of ecosystems and thus the delivery 

of ES. In the Swiss alpine regions, the delivery of ES are simultaneously affected by land abandonment 

(Gellrich et al., 2007), increasing land use intensity and climate change. Expert knowledge from 

researchers and practitioners is needed to develop management options that support the delivery of ES 

of permanent grasslands under current and changing conditions. Various innovative management 

options for perennial grassland have been developed, but if and how these support the delivery of ES 

in alpine regions is not well understood. We identified six management options that might be applicable 

in the alpine region (Table 1). A Delphi study was conducted to assess the feasibility and potential effects 

of these new management options on the delivery of ES under the specific climatic, political and 

institutional conditions of the Swiss alpine region. 

Materials and methods 

An online Delphi study, using two rounds of questionnaires with anonymous feedback of results between 

rounds, was carried out with ten experts who assessed the six management options in terms of the 

delivery of ES and their applicability under both the current climatic conditions in the alpine region, and 

the socio-economic, institutional and political conditions of Switzerland. The six management options 

were pre-selected by experts for their representation of a range of (1) technology readiness levels; (2) 

level of new skills required for implementation; and (3) potential impact in the alpine region. Ten expert 

participants for the Delphi study were recruited from four institutions in Switzerland, representing a range 

of academic disciplines (economist, farm adviser, ecologist, soil scientist, livestock scientist, engineering 

and precision farming, veterinary scientist, animal welfare, social scientist). Experts were selected for 

their subject knowledge as well as contextual knowledge of Swiss alpine regions. We do not have a 

spatial distribution in the observations because experts were selected based only on their expertise. 

A modified Delphi technique (Hasson and Keeney, 2011) was used to explore the attitudes of the 

interdisciplinary group of experts and gather information and opinions in order to obtain the most reliable 
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position of the group (Dalkey and Helmer 1963). An online survey platform was used to create two 

rounds of the survey. Each round consisted of closed questions, answered using likert scales, and open 

questions, using free text, allowing for elaboration and explanation. The first round questions focused 

on the assessment of each management option in relation to its rationale, mechanism of action and 

outcomes, ecosystem service delivery, applicability and support. The second round presented 

anonymized summaries of the results of the first round, highlighting agreement and disagreement, and 

asked participants to answer questions again for which there had been less than 80% agreement. This 

sought to offer experts the opportunity to clarify or change their opinions based on the answers of the 

other experts. 

Table 1. Description of management options. 

Type Option Description 

Sward 
manipulation 

Overseeding 

Overseeding is carried out on the existing sward to create establishment niches 
in which a selection of desired plant species can be broadcast sown or slot 
seeded with different grass or legume species or mixtures without complete 
sward destruction. 

Sward 
renewal  

Complete sward renewal through sward destruction (non-selective herbicide 
spraying or cultivation) and reseeding; carried out when the existing sward is not 
meeting current land management objectives, e.g. when the current sward 
contains less than 50% desired species. 

Monitoring & 
predicting 
grass growth 

‘GrassCheck’ 

Weather and grass growth monitoring to improve grassland management and 
to assist farmers in improving both grass growth and utilization. It can include 
an online management platform to monitor and predict grass growth, grass 
quality and weather in different regions. 

Rising plate 
meters 

Rising plate meters are used to measure grass sward height as a proxy for grass 
quantity. A large number of measurements can be taken in a short time so that 
a large area can be covered to account for spatial heterogeneity within fields.  

Grazing 
management 

Virtual fencing 
Use of virtual fencing technologies to control and manage grazing without 
installing permanent barriers or the need for high labour input temporary 
(electric) fencing. 

Farm-scale 
management 

Biodiversity 
management 

Managing grassland in a variety of ways across a farm to create a diversity of 
habitats and enhance biodiversity at various trophic levels from soil 
invertebrates to birds and mammals. 

The two rounds took place in September and October 2020, with each round’s online survey open for 

participation during a 1.5 week period, with a break of 2 weeks in which the results of the first round 

were summarized for participants in the second round. Quantitative and qualitative data from the surveys 

were analysed using software packages SPSS and NVivo for trends and comparisons. 

Results and discussion 

The majority of the experts (based on second round survey, where in total 9 experts participated) stated 

that four out of the six management options (overseeding, GrassCheck, rising plate meters, biodiversity 

management) are successfully applicable under both the current climatic conditions in the alpine region 

and the socio-economic, institutional and political conditions of Switzerland. Only one expert disagreed 

that rising plate meters are applicable in the alpine region, arguing that this option can only be 

implemented if the relationship between sward height and biomass is properly calibrated, a task that 

may be too time-consuming in the case of diverse alpine grassland regions. There was no consensus 

on whether sward renewal and virtual fencing are successfully applicable under the current climatic 

conditions of the alpine regions. One expert stated that sward renewal increases the risks of erosion 

and doubted that seeds adapted to the specific climatic conditions would be available. Virtual fencing is 

considered problematic in the alpine regions because of inaccurate georeferencing due to steep slopes. 

Experts achieved a consensus that sward renewal and virtual fencing were not successfully applicable 

under the current political, institutional and socio-economic conditions of Switzerland. For virtual fencing, 

the current Swiss animal welfare legislation does not allow animals to receive electric pulses and 

citizens’ acceptance of virtual fencing was likely to be low. For sward renewal, one expert stated that 

destroying swards in alpine regions was not accepted by Swiss society. However, the majority of the 

experts saw some potential relevance for all six management options if the climatic conditions in Swiss 

mountain regions were to change. 
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The Delphi-study showed that farm scale and sward manipulation measures such as biodiversity 

management, overseeding, and sward renewal affect all of the considered ES. The majority of experts 

stated that biodiversity management measures have a positive effect on biodiversity and pollination. 

Overseeding was also rated positively for biodiversity and prevention of soil erosion, while sward 

renewal was rated negatively for five out of nine ES (Table 2). 

Table 2. Effects that each management option is likely to have on delivery of ES. 

 

Biodiversity 
Management 

Over-
seeding 

Sward 
renewal 

Grass-
Check 

Rising plate 
meters 

Virtual 
fencing 

Biodiversity + + - +/- +/- n.c. 

Pollination + n.c. n.c +/- +/- +/- 

Carbon storage +/- n.c. - +/- +/- +/- 

Greenhouse gas emissions n.c. +/- n.c +/- +/- +/- 

Flood control +/- +/- - +/- +/- +/- 

Water quality +/- +/- +/- +/- +/- +/- 

Prevention of soil erosion +/- + - +/- +/- +/- 

Prevention of soil compaction +/- +/- n.c +/- +/- n.c. 

Prevention of loss of organic soil 
matter +/- n.c. - +/- +/- +/- 

Landscape aesthetics + +/- n.c +/- +/- n.c. 

Recreation + n.c. n.c +/- +/- + 

Animal health and welfare n.c. +/- +/- + + n.c. 

Grass production for livestock - + + + + n.c. 

Grass production for biomass - + + + + +/- 

+ More than 50% of the experts stated that the management option is likely to have a positive effect; +/- More than 

50 % of the experts stated that the management option is likely to have neither a positive nor a negative effect; - 

More than 50 % of the experts stated that the management option is likely to have a negative effect; n.c.: experts 

achieved no consensus. 

While biodiversity management was rated positively in terms of cultural ES such as landscape aesthetics 

and recreation, it was rated negatively for provisioning ES such as grass production for livestock and 

biomass. In contrast, the majority of experts stated that both overseeding and sward renewal have a 

positive effect on provisioning ES. The results of the Delphi study showed that measures for monitoring 

or predicting grass growth such as GrassCheck and rising plate meters have neither a positive nor a 

negative effect on most of the ES. However, both measures were rated positively in terms of animal 

health and animal welfare, and for grass production for livestock and biomass. The majority of the 

experts considered that virtual fencing would have no effect on other than provisioning ES. While experts 

reached no consensus on whether it is positive or negative for animal health and animal welfare, the 

majority rated it positively in terms of cultural ES such as recreation. 

Conclusions and recommendations 

Sward renewal should not be applied under the current climatic, political, institutional and socio-

economic conditions of the Swiss alpine regions because of its foreseeable negative ecological 

consequences. Biodiversity management fits perfectly under the Swiss alpine conditions, in particular 

when farmers are compensated for their economic losses. For management options that focus on the 

monitoring and prediction of grass growth we found no trade-off between the different ES that could be 

delivered. They are recommended because of their positive impacts on provisioning services such as 

grass growth for livestock and biomass without any foreseeable negative consequences on biodiversity. 

However, virtual fencing is currently not applicable in Switzerland because of animal welfare concerns. 

Acknowledgement 

The research leading to these results received funding from the European Community’s Horizon 

Programme under grant agreement no. 774124 (SUPER-G). 

References 

Bengtsson J., Bullock J.M., Egoh B. et al. (2019) Grasslands—more important for ecosystem services than you 

might think. Ecosphere 10:1–20. https://doi.org/10.1002/ecs2.2582 



 
Grassland Science in Europe, Vol. 26 – Sensing – New Insights into Grassland Science and Practice 162 

 

Dalkey N., Helmer O. (1963) An experimental application of the Delphi method to the use of experts. Management 

Science, 9(3), 458–67. 

Gellrich M., Baur P., Koch B., Zimmermann N.E. (2007). Agricultural land abandonment and natural forest re-growth 

in the Swiss mountains: a spatially explicit economic analysis, Agriculture, Ecosystems and Environment 

118, 93-108 

Hasson F. and Keeney S. (2011) Enhancing rigour in the Delphi technique research. Technological Forecasting & 

Social Change, 78, 1695-1704. 

Hubert R. and Finger R. (2020) A meta-analysis of the willingness to pay for cultural services from grasslands in 

Europe. Journal of Agricultural Economics 71: 357-383. https://doi.org/10.1111/1477-9552.12361 

Zhao Y., Liu Z. and Wu J. (2020) Grassland ecosystem services: a systematic review of research advances and 

future directions, Landscape Ecology 35, 793-814. https://link.springer.com/article/10.1007/s10980-020-

00980-3 

  

https://link.springer.com/article/10.1007/s10980-020-00980-3
https://link.springer.com/article/10.1007/s10980-020-00980-3


 
Grassland Science in Europe, Vol. 26 – Sensing – New Insights into Grassland Science and Practice 163 

 

Mapping grassland management and habitats with satellite and ground 

level imagery through machine learning 

O’Hara R.1,2, Saad M.2,3, Zimmermann J.1, Green S.1, Finn J.4, Mac Namee B.3, McGuinness K.5 and 

O’Connor N.5 

1Teagasc, Ashtown Food Research Centre, Dublin, Ireland; 2SFI VistaMilk Research Centre, 

Moorepark, Cork, Ireland; 3UCD Insight Centre for Data Analytics, Dublin, Ireland; 4Teagasc, 

Environmental Research Centre, Johnstown Castle, Wexford, Ireland; 5DCU Insight Centre for Data 

Analytics, Dublin, Ireland 

Abstract 

Intensive grassland management is impacting Europe’s semi-natural grassland habitats. Without 

accurate data on the extent of intensive practices, conservation efforts to reverse biodiversity loss 

cannot succeed. This study explores how multispectral and synthetic aperture Radar (SAR) imagery 

and machine learning (ML) can be used to classify management intensity in Ireland. Preliminary results 

using three land-use classes had overall accuracy between 85 and 91%. Class labels were derived from 

Eurostat LUCAS survey photographs taken in 2018. Using ML, paddocks within the improved class were 

identified with ~86% accuracy. Work continues on expanding the model to a regional scale and different 

levels of intensity. The project also explores how subjectivity in class labelling can be reduced using 

Deep Learning. The study demonstrates the potential of in-situ photography for validating habitats and 

land use studies with clear implication for future CAP monitoring. 

Keywords: management intensity, biodiversity, Sentinel, LUCAS, artificial learning 

Introduction 

The expansion of intensive management practices and abandonment of marginal land are critical factors 

in the continuing decline of Europe’s species-rich, semi-natural grassland habitats (Plantureux et al., 

2005). Ireland has the greatest proportion of grassland cover in the EU. While many Irish farms have 

high nature value, agricultural intensification and specialization threaten remaining semi-natural habitats 

(Ó hUallacháin et al., 2016). The extent and quality of habitats is poorly understood as there is a lack of 

farm-scale baseline data that could support biodiversity conservation efforts. Earth observation (EO) 

satellite data can simplify the task of habitat mapping; however, the disparity between habitat scale and 

observation scale has hampered habitat mapping in the past. The increasing availability of medium to 

high resolution EO imagery, coupled with continuing developments in artificial learning, are providing 

new opportunities for mapping grassland habitats and management (Bekkema and Eleveld, 2018). The 

objective of this study was to assess the capability of multi-sensor, multi-temporal EO imagery for 

mapping grassland management intensity as a proxy for grassland habitats. The project also examines 

whether labelling of land use class can be made less subjective by using Deep Learning algorithms. 

Materials and methods 

Land use intensity was characterized for 856 locations using photographic records from the Eurostat 

2018 Land Use and Coverage Area frame Survey (LUCAS). LUCAS is a triennial survey that collects 

harmonized and comparable statistics on land use/ land cover (LULC) and environmental parameters 

at pre-selected locations across the EU. Initially 3 class labels (“Improved”, “Semi-improved” and 

“Unimproved”) were assigned to LUCAS images following project-specific LULC description keys. These 

locations were intersected with boundary polygons from national vector mapping (OSI PRIME2), with 

these a priori objects subsequently used for object-based image analysis (OBIA) of ESA Sentinel-1 (S1) 

and Sentinel-2 (S2) imagery. All available images between Jan. 2017 and Dec. 2019 were used (see 

Figure 1). Satellite imagery were downloaded from the CNES PEPS data repository. S1 SAR 

interferometric wide-swath images were pre-processed using SNAP software (v.8.0) (orbit correction, 

edge noise removal, backscatter calibration (σ0), Range-Doppler terrain correction) into 3-channel 

composite images (VH, VV and VH.VV). Using R Statistical Software, individual scenes were 

aggregated into a 52-image mean time-series corresponding to weeks of the year. Grey-level co-

occurrence (GLCM) images (mean, variance, homogeneity, dissimilarity and entropy) were also created 
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for VV and VH bands (at 5x5, 9x9 kernels). Downloaded S2 images were corrected to Bottom of 

Atmosphere reflectance using Sen2Cor (v.2.8) and cloud/ shadow masked using MAJA (v.3.2). These 

were aggregated into a 12-image time-series corresponding to calendar months. Spectral indices 

(enhanced vegetation index (EVI), normalised difference vegetation index (NDVI), normalised difference 

water index (NDWI) and normalised difference red edge vegetation index (NDREVI)) were derived. 

GLCM images were created the S2 Band 8 near-infrared. Descriptive statistics (mean and standard 

deviation) were calculated for each variable/object. For ML, these data were split (70:30) into 

training/validation datasets within R using random sampling without replacement. The selected 

algorithms were random forest (RF) and extreme gradient boost (XGB) algorithms based on 5-fold cross 

validation. Fine-tuning of hyperparameters was executed using the grid search functionality within 

“caret”. Separate models were tested using S1 only, S2 only and a combination of the two. 

Dimensionality was reduced using principal components analysis (PCA), as well as targeted variable 

selection based on the XGB variable importance function. ML was also used to detect paddocks within 

the “Improved” class. Labels for the binary classification were based on visual inspection of LUCAS 

photos. RF, XGB, support vector machine (SVM), k-means nearest neighbour (KNN) and neural network 

(avNNet) algorithms were tested. For all models, thematic accuracy was assessed using the confusion 

matrix function in “caret” which produces a cross-tabulation of observed and predicted classes (error 

matrix) with associated accuracy metrics. Overall accuracy (OA) is reported hereafter. 

 

Figure 1. S2 data extracted to a polygon object at a LUCAS point (▲). Inset: Ground level photograph 

showing extensive management (inset © Eurostat). 

Results and discussion 

The management intensity map at 3 classes had 85-91% OA. The best performing model was the XGB 

algorithm using selected variables (0.911; 95% CI [0.870, 0.943]). However, all models performed well 

with only 5% difference in error between best and worst models (Table 1). 

Table 1. Overall accuracy for management intensity classification (3 classes). 

 S1 S2 S1+S2 PCA Selected variables 

RF 0.867 0.886 0.896 0.856 0.904 

XGB 0.882 0.886 0.886 0.851 0.911 

Z-tests indicated these differences in OA were not statistically significant (Z=1.06; p ≥0.144). 

Dimensionality reduced dataset using PCA had the highest error but reducing the dataset through 

variable importance improved accuracy and reduced processing time. The most important overall 

variables were multispectral data with March VI and texture dominating the top 10 important variables. 

Spectral indices had greatest influence on classifying the “Semi-improved” class. Dissimilarity and 

variance were important texture metrics. For SAR, VH.VV was more important than VH or VV 

individually. Optical and SAR texture metrics were equally important for distinguishing the “Unimproved” 
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class. ML also showed promise for identifying paddocks within larger fields (Table 2), with 86% OA 

achieved using SVM and RF on the full dataset. 

Table 2. Overall accuracy for paddock detection. 

 SVM RF XGB KNN avNNet 

Paddock detection 0.855 0.855 0.836 0.709 0.618 

The spatial variation captured in the texture metrics were important in detecting paddocks using this 

approach. Research continues on expanding the number of classes and validating the results. The 

project also attempts to reduce subjectivity in manually labelling data by developing a deep learning 

model using semi-supervised training methods to automatically classify ground level photographs to 

distinct management classes. Research is underway to utilize a small number of manually labelled 

photographs to train a convolutional neural network (CNN) that can scale up classification of ground 

level photographs with high accuracy. 

Conclusions 

This study distinguished three classes of grassland management intensity using a multi-sensor object 

based approach (OA 85-91%). Additionally, paddocks within larger objects were identified with 86% 

accuracy. This study demonstrates the potential of combining ground level photography with multi-

sensor EO imagery for training and validating management and habitat maps with clear implications for 

supporting and validating claims under future CAP monitoring requirements. 
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Abstract 

The provision of Earth Observation (EO) technology-driven services to grassland farmers has lagged 

behind those provided to arable farmers. Precision Agriculture (PA) in grassland animal systems has 

largely focused on Precision Livestock farming (PLF) with the application of technology to grass 

management limited to improved record keeping and automated planning. New data in the form of 

European Space Agency Copernicus satellites has stimulated the market for using EO data in grassland 

management, and stimulated research into the monitoring of grassland types, habitats, and use. This 

short review looks at currently available grassland commercial PA services that utilize EO data. It 

explores the range of services on offer and discusses the reception and potential in the grassland 

management business. 

Keywords: precision agriculture, digital agriculture, decision support, earth observation 

Introduction 

The potential of digital agriculture and Earth Observation (EO) to support the grass-based agricultural 

sector is widely recognized (Hennessy et al., 2020). The remote sensing community has in the past 

largely viewed 'grasslands' as a target in the environmental domain, looking at issues around 

exploitation and classification. However, in the last decade research into the use of remote sensing for 

understanding grassland dynamics as an agricultural target has grown (Ali et al., 2016). As the research 

focus has shifted, commercial services exploiting this shift have emerged. 

Precision Agriculture (PA) for pastoral systems has focused commercially on the animal, exploiting the 

space sector through application of location services (Banhazi et al., 2012) but a renewed focus on 

technology for grass management has excited interest in the use of EO on grassland farms. The sector 

has begun to grow but it is currently nowhere near to the level of the arable and horticulture sectors. In 

a critical review of PA, Lowenberg-DeBoer and Erickson (2019) note the literature on PA adoption in 

animal systems is so sparse that they chose to limit their study to arable farming. 

Here we present a review of commercial, EO-driven services currently available for use on grassland 

farms. We identify the type of service offered, focusing only on those services that exploit EO data in 

some way. Most of the services discovered (between 2/12/2020 and 31/1/2021) focus on cropland but 

they are included here if they offer some functionality to the grassland farmer. Those functions were 

explored in a recent review of published articles on remote sensing of grasslands (Reinermann et al., 

2020) and may be broadly broken down into mapping relative biomass from a Normalised Difference 

Vegetation Index (NDVI); empirical approaches to correlating NDVI with ground estimate of biomass; 

modelling of vegetation biophysical properties; grazing intensity; mowing frequency; general use 

intensity and management type. We also include basic paddock mapping functionality and integration 

with farm management systems. While the study is focused on Europe we have included a number of 

Australian and New Zealand services as the market there is more mature and some do extend their 

offering into Europe. It must be emphasized that this list can only be a partial snap-shot of what is a very 

dynamic market, and the offering of the services listed will change and grow. In this short review we 

ignore satellite-base services created for the insurance market (Vroege et al., 2019), however, noting 

that regional data on grass yield could be useful to individual grassland farmers with respect to non-

forage feed prices in the event of a general fodder supply issue (O’Donoghue et al., 2016). 

Service demand 

A review, as recent as 2018, concluded there was insufficient evidence that the growing array of PA 

tools for grassland had improved management sufficiently to warrant their adoption (Shalloo et al., 

2018). However, this is a quickly developing market and one that is continually being evaluated. 
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The SuperG H2020 project recently completed a study of decision support technology for permanent 

grassland across Europe (Sagoo et al., 2020). It identified 127 different tools, five of which used EO 

data or technology (two of these are developed specifically for grasslands). The H2020 Fairshare project 

(www.h2020fairshare.eu) looking at the digitization of advisory tools found 214 tools with 12 exploiting 

satellite imagery, and most were generic online mapping services such as Google Maps. The 

SmartAKIS portal (https//smart-akis.com), focuses on digital advisory tools, and has registered 430 

digital farming products on the market; of these, 55 are marketed at grassland farmers. Of the total, 209 

relate to mapping or geolocation, but only 13 explicitly mention the use of satellite observation data and 

18 use drones. 

The drivers for grassland farmers to take up this technology have also been explored. Irish farmers were 

surveyed on attitudes to digital agriculture (Skillnet, 2019). Of the 728 farmers surveyed, 6% of beef, 

2% of dairy and 9% of sheep farmers were using satellite imagery in some way, compared with 28% of 

tillage farmers. Availability of broadband was the main barrier (55%) identified, and when asked what 

would be the main incentive to adopt digital agriculture, cost reduction was the most frequently cited 

(59%). A study comparing, through interviews, the attitudes of UK and Irish grassland farmers found 

Irish farmers see 'low cost expansion through grazing' as the dominant model going forward, whereas 

UK farmers see optimizing grass production regardless of the system as the likely future scenario 

(Shortall, 2019). Naturally, these differing concepts of the future will drive the type of PA that is adopted 

in Ireland and the UK and suggest that a 'one size fits all' model of PA for grassland is not the ideal. 

There is a market for these services, and whilst small, it is growing. 

Available services 

Most of the services listed in Table 1 were originally built for arable farmers, and focus on intra-field 

biomass variation, yield prediction, pest control, and control of variable rate technologies (VRT) on the 

farm. While research into VRT application for fertilizer and lime is underway, the adoption of VRT on 

European grassland farms is low. However, the use of the NDVI for examining biomass variability within 

and between fields is agnostic of vegetation type and can be used by grassland farmers. A small number 

of the services listed have created specific models to estimate biomass (kg ha-1) or growth rate (kg ha-1 

day -1) of grass from satellite data, and these are of more direct use. These figures can be directly fed 

into grass/feed wedge calculations for farms. Two of the systems, focused on dairy, exploit proprietary 

sensors in an Internet of Things (IoT) model to provide highly accurate and local information on weather, 

soil temperature and other variables. The free service CropSat should be highlighted. It generates NDVI 

maps for digitized fields from current and archive Sentinel 2 imagery, and it allows farmers to explore 

the potential of this technology without cost. 

Grassland mowing and harvesting cycle detection is in demand from paying authorities, policy makers 

and agricultural insurers (European Court of Auditors, 2020) but this has little interest to the farmer as a 

direct product. However, mowing, cutting and grazing detection is potentially important in a fully 

automated grass management software package. 

The types of EO-driven services supplied are divided into the following categories: 

• Map – Using EO imagery as background to enable mapping out of fields and paddocks. This 

can be as generic as MyMap from Google or automatic detection of boundaries and 

management unit. 

• NDVI – Provides field scale time series of NDVI data for monitoring relative performance of 

grass and crop biomass (but does not predict or model actual biomass)  

• Wedge – Automatically generates a grass or feed wedge using EO data (not farm records) 

• Biomass – Through empirical or other approaches, estimates biomass (kg ha-1) or growth rate 

(kg ha-1 day -1) from EO data for grass (not yield maps from machinery) 

• IoT – A service that incorporates other in-field connected sensors (such as weather stations) to 

improve EO derived measures of biomass, so called 'Internet of Things'. 

The services listed all provide a wider range of data services than those listed. Here we show only those 

services that use EO. 
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Discussion and conclusion 

Services that are focused on crops would seem to be well placed to expand into grassland farming 

services. However, they have been somewhat outpaced by pasture-focused services which understand 

the needs of the livestock farmer. Intra-field or paddock variation is, for now, of less interest to the 

grassland farmer than the relative performance between paddocks, expressed as a grass wedge. A 

number of the listed services generate a grass wedge. Relative scores of biomass have their place, 

such as in providing a relative benchmark for farmers who are not record keepers, especially as climate 

volatility makes recalling what is 'normal' or 'average' difficult (Green et al., 2018), However, data-hungry 

farmers need actual numbers. 

Reliability is very important, and issues as a result of cloud cover have been a major drawback for EO 

in grassland management. However, there are now three strategies employed for dealing with data loss 

through cloud issues: (i) modelling plant growth to gap fill cloudy acquisitions; (ii) use commercial high 

temporal, high resolution systems to acquire daily optical satellite imagery; and (iii) use of radar data 

that penetrate cloud with Vegetation Optical Depth (VOD), rather than NDVI as a biomass proxy (some 

crop services model growth stage from radar data). 

Most of the providers examined in this review, and others (Jarman and Dimmock, 2018), offer little 

concrete evidence on the actual benefit in terms of yield increase, or reduced input costs on paddocks, 

instead emphasizing efficiency for the farmer. Furthermore, most of the services have not been fully 

tested in the challenging, heterogeneous field and soil landscape of European grassland regions. Most 

of the services are implemented on apps for mobile and tablet. 

The services found have focused on grass observations, hoping to eliminate manual data entry on farm 

walks to record paddock covers. However, there are important elements of grassland management and 

grazing that do not yet appear to be addressed as potential services, such as soil trafficabilty for animals, 

total harvest yield for silage/hay, and grassland weed detection and control, among others in the 

research literature. 

There is, as yet, no full service grassland management app that uses satellite data to automatically 

record biomass, growth rate and harvest yield as well as grazing, cutting, slurry spreading events 

(important as part of nutrient management plan on the farm), and ultimately delivering a weekly report 

to the farmer of such activities (these reports may play a role in future CAP monitoring and remote cross 

compliance checks) with a forecast of grass growth for the week ahead. These are all possible, at the 

moment, and in part are reflected, in toto, in the list of services in Table 1. 

Table 1. List of identified online digital agriculture services applicable to grassland (FOCUS – (P)asture, 

(C)rop) 

Name Service FOCUS Notes 

Akkerweb Map, NDVI P/C Integrates with VRT and other technologies and with 
a manual grass measurements recording system 
(Grip op Gras) 

FarmSat Geosys Map, NDVI C Management optimization tool 

Field-Boundary Map C Automatic field boundary mapping form imagery 

Kore Map, NDVI C Platform to integrate various data sources to provide 
decision support 

Pasture.io Map, NDVI, 
Biomass, Wedge 

P High resolution high frequency optical mapping. 

Grass wedge needs reliable data input from farmer. 

NZ but offers service in EU 

LIC SPACE Map, NDVI, 
Biomass, Wedge 

P Optical gap fills using predicted pasture growth 

Pasture From 
Space 

NDVI P Focus on Range Management 

Cloud Free 
Biomass – 
Vandersat/basf 

Map, NDVI C Gives daily relative biomass maps using VOD as a 
proxy for biomass (as NDVI is a proxy for biomass in 
optical systems 
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Table 1. List of identified online digital agriculture services applicable to grassland (FOCUS – (P)asture, 

(C)rop) – continued 

Name Service FOCUS Notes 

Anuland- 
Fieldsense 

Biomass, Map, 
IoT, DSS 

P Primarily uses proprietary sensors on farm to produce 
outputs - uses EO as background 

MiSat Map, NDVI C/P Links to variable rate control systems 

FarmMote Map, NDVI, 
Wedge, IoT 

P Augments EO with in-field sensors it calls 'motes' 

Fieldmargin Map, NDVI, 
Wedge 

C/P  

EDENPA NDVI, Map, 
Biomass 

P Australia 

Cibolabs NDVI, Biomass, 
Map 

P  Australia 

CropSAT NDVI C/P This free service maps intrafield biomass variation 
using Sentinel 2 data. 

Datafarming NDVI, Map C Australia 

Contour from Rhiza Map, NDVI C Optical and SAR 

Primarily a full service digital farming service for crops 
and soil. Is working toward grassland 

Climate FieldView NDVI, Map C Provides yield maps for crops but not grassland- 
integrated into VRT and other PA tech for cropland 

Cropio NDVI, Map C US farmland management service- focused on crops 

Agrisat/ NDVI, Map C Uses the open research platform SpiderWebGIS as 
do many water/catchment projects 

PastureMap Map P Sensor/farmer input focussed but uses EO as 
background image. Focused on rangelands in US 

Deep Planet  C DeepPlanet is focused on yield modelling for crops 
and soil management but has a service in 
development called Grass signal (c.f. their soil signal 
product) providing estimates in kg/ha of grassland 
biomass 

This short review of EO services for pasture shows an emerging technology but a fragmented, fractious 

market (start-ups that quickly collapse, and services going through multiple owners). A recent theoretical 

study (Rutuu et al., 2017) has shown the development of digital platforms thrive when there is a high 

degree of openness between platforms. Providing a set of interoperable services and platforms could 

therefore be the key to ongoing growth (Bahlo et al., 2019). 

Web addresses of services listed in Table 1: 

CropSat  https://cropsat.com/  

Akkerweb  https://akkerweb.eu/nl-nl/  

FarmSat Geosys https://www.urthecast.com/geosys/farmsat/  

Field-Boundary   https://Field-boundary.com  

Kore   https://www.soilessentials.com/product/kore/ 

Pasture.io  https://Pasture.io  

LIC SPACE  https://www.lic.co.nz/products-and-services/space/  

Pasture From Space http://www.pasturesfromspace.csiro.au/  

Cloud Free Biomass https://vandersat.com/data/cloud-free-biomass/  

Anuland- Fieldsense https://Annuland.ie  

MiSat    http://www.precisiondecisions.co.uk/agriculture/misat  

FarmMote  https://farmote.com/  

Fieldmargin  https://fieldmargin.com/  

EDENPA  https://edenpa.com.au/  

Cibolabs  https://www.cibolabs.com.au/  

Datafarming  https://www.datafarming.com.au/  

https://cropsat.com/
https://akkerweb.eu/nl-nl/
https://www.urthecast.com/geosys/farmsat/
https://field-boundary.com/
https://www.soilessentials.com/product/kore/
https://pasture.io/
https://www.lic.co.nz/products-and-services/space/
http://www.pasturesfromspace.csiro.au/
https://vandersat.com/data/cloud-free-biomass/
https://annuland.ie/
http://www.precisiondecisions.co.uk/agriculture/misat
https://farmote.com/
https://fieldmargin.com/
https://edenpa.com.au/
https://www.cibolabs.com.au/
https://www.datafarming.com.au/
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Contour from Rhiza https://www.rhizadigital.co.uk/contour/  

Climate FieldView https://climate.com/  

Cropio   https://cropio.com/ 

Agrisat   https://agrisat.es/ 

PastureMap  https://pasturemap.com/  

Deep Planet  https://www.deepplanet.ai/  
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Abstract 

This paper describes a tool that enables farmers to time harvests and target nitrogen (N) inputs in their 

forage production, according to the prevailing yield potential. Based on an existing grass growth model 

for forage yield estimation, a more detailed process-based model was developed, including a new 

nitrogen module. The model was tested using data from an experiment conducted in a grassland-rich 

region in central Norway and showed promising accuracy with estimated root mean square error 

(RMSE) of 50 and 130 g m-2 for dry matter yield in the trial. Three parameters were detected as highly 

sensitive to model output: initial value of organic N in the soil, fraction of humus in the initial organic N 

in the soil, and fraction of decomposed N mineralized. By varying these parameters within a range from 

0.5 to 1.5 of their respective initial value, most of the within-field variation was captured. In a future step, 

remotely sensed information on model output will be included, and in-season model correction will be 

performed through re-calibration of the highly sensitive parameters. 

Keywords: grass growth model, nitrogen availability, sensitivity analysis 

Introduction 

Nitrogen is essential for grass growth. While N deficit inhibits growth, surplus N harms the environment 

through leaching and increased gaseous emissions. Optimized N application is therefore desired, but is 

difficult to implement due to system complexity. The aim of this study was to develop a new dynamic 

model with a soil N module, to serve as a tool that enables farmers to time harvests and target N inputs 

in forage production. 

In this study, the design and test of the core model was addressed. A sensitivity analysis was performed 

on a selection of model parameters to detect the parameters which affect the yield prediction most. 

Further, the predictive uncertainty in model output induced by these highly sensitive parameters was 

explored. In the next step, the model will be expanded to enable in-season corrections of selected 

sensitive model parameters, based on remotely sensed information on above ground standing biomass 

and proportions of clover. 

Materials and methods 

A new process-based grass growth model was developed based on Grovfôrmodellen (Bakken, 2016). 

The model applies to growth of grass swards in perennial leys and estimates dry matter yields (g m -2) 

on a daily basis. The model requires diurnal input of weather data (air temperature, soil temperature, 

precipitation, global radiation, wind speed and relative humidity), some soil properties (field capacity and 

plant available water capacity, which may be estimated from texture data), the clover proportion in the 

swards and some management data (timing and amount of N fertilization and timing of harvests). The 

overall concept of the model is given in Equation 1, describing the calculation of daily growth of 

harvestable aboveground dry matter (∆DMyield): 

∆𝐷𝑀𝑦𝑖𝑒𝑙𝑑(𝑑) = ∆𝐷𝑀𝑝𝑜𝑡(𝑑) ∙ 𝑚𝑖𝑛(𝑇𝐼(𝑑), 𝑆𝐼(𝑑),𝑊𝐼(𝑑)) ∙ 𝑁𝐼(𝑑) ∙ 𝐴𝐼(𝑑)     (1) 

The potential daily growth of dry matter yield (ΔDMpot) was calculated in line with Grovfôrmodellen. 

Factors known to retard growth were accounted for by indices. Indices of temperature (TI), solar 

radiation (SI) and age/ phenological stage of plant development (AI) were given as simple equations 

(Angus et al., 1980), while indices of water availability (WI) and N (NI) were calculated in separate 

modules. While WI was given as the ratio of actual to potential evapotranspiration, NI was estimated as 

the ratio of actual N in the plant to the critical N (Greenwood et al., 1990). Plant N uptake was given as 
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the inorganic plant available N in soil, set according to a maximum uptake, whereas daily soil N content 

of organic and mineral form was estimated from the processes of N fertilization, clover fixation, 

nitrification, denitrification, percolation, leaching, mineralization, humification and root death. 

To determine the parameters that are the key drivers of the model, a sensitivity analysis (Morris, 1990) 

was performed to calculate µ* (representing the overall influence of the parameters on model output) 

and σ (representing interactions with other parameters or nonlinear effects). Further, predictive 

uncertainty in model output induced by parameter uncertainty was explored by running the model 100 

000 times, while allowing the highly sensitive parameters to vary within a range from 0.5 to 1.5 of their 

respective initial value. 

The model was implemented in Matlab (R2019a). It was tested using two datasets with field 

observations of dry matter yield at Kvithamar in central Norway in 2016, including data from plots with 

either high or medium levels of N fertilization (Geipel et al., 2021). Weather data were obtained from a 

weather station at the site (daily temporal resolution), soil data were based on soil analyses performed 

in earlier projects and pedotransfer functions (Riley, 1996), clover proportion at cutting time was given 

through NIRS analysis (Fystro & Lunnan, 2006) and timing and amount of N fertilization and timing of 

harvests was recorded. 

Results and discussion 

Observed dry matter yield showed high within-field variation, regardless of N level and cutting time 

(Figure 1). For the treatment with a high N fertilization level (Figure 1a), the model predicted dry matter 

yield within the centre of the observations for the first cut, while an underestimation with fit within the 

lower range of observations was found for the second cut. The RMSE between the model output and 

the mean observed yield was 50 g m-2. For the medium dose of N applied (Figure 1b), yield at the first 

cut was underestimated with fit within the lower range of observations, while yield at the second cut 

fitted well within the centre of the observations (RMSE of 130 g m-2). 

 

Figure 1. Model output from the grass growth model and observed values from Kvithamar (2016) of 

harvestable dry matter yield, with high (a) and medium (b) level of N fertilization. The grey area 

represents variation in model output induced by varying three most sensitive parameters within a range 

from 0.5 to 1.5 of their respective initial values (see Figure 2). 

The N index had an effective and necessary limiting effect on simulated plant growth. Without including 

the N module, the model generally overestimated grass growth with RMSEs of 330 and 350 g m-2, 

respectively. 

Ten parameters of the N module were selected for a sensitivity analysis and the model output appeared 

to be highly sensitive to changes in three parameters (Figure 2). These parameters were the initial value 

of organic N in the soil (Figure 2), the fraction of humus in the initial organic N in the soil, and the fraction 

of decomposed N mineralized. 

The predictive uncertainty area in model outputs induced by parameter uncertainty from the three most 

sensitive parameters was explored and covered most of the within field variation (Figure 1a and b). 
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Figure 2. Results from sensitivity analysis of the grass growth model, using the Morris method, given as 

the overall influence (µ*) and the interaction with other parameters (σ) for ten selected parameters. 

In the next model revision, UAV-borne sensing inputs of crop biomass and clover portions will be 

provided periodically during the run time. When the error term between model output and sensed 

biomass is not within an acceptable range, the sensitive parameters will be re-calibrated to achieve an 

improved fit and, subsequently, more robust estimates of site-specific N demand. 

Conclusions and outlook 

The newly developed model estimated yield reasonably well. Three parameters within the N module 

were detected, to which the model outcome was particularly sensitive. The output area spanned by 

these parameters was calculated, showing a great potential to increase accuracy by using site-specific 

values for these parameters. 

In a next implementation step, routines will be included to enable the model to provide predictions of N 

demand, needed to reach the full yield potential. Moreover, the model will be able to handle yield and 

estimates of clover proportion from UAV-borne sensing as additional inputs to re-calibrate the model 

within the season to further increase its prediction accuracy. 
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Abstract 

In order to achieve a sustainable improvement in livestock grazing systems with their long European 

tradition, there is a need to improve understanding of behaviour of cattle on pasture. Maintaining the 

botanical and structural balance of heterogeneous pastures is becoming significant especially in the 

context of climate change. In this study, the long-term cattle grazing experiment ‘FORBIOBEN’ with its 

three paddock-scale grazing intensities (GI) [moderate (M), lenient (L), very lenient (VL)] each replicated 

thrice, is used to investigate movement and diurnal patterns of cattle behaviour in relation to the grazing 

intensity and season. The study took place in the spring and autumn grazing events during four periods 

between May 2017 and July 2020. Nine pregnant suckler cows were equipped with GPS collars, which 

record both position and activity of the animals at minute intervals. A strong diurnal pattern became 

evident with a shift in the activity peaks during the autumn period. The highest effort in walking was 

found in M compared to L and VL for three grazing periods. We discuss these results against the 

background of the suitability of cattle tracking for pasture management and vegetation parameters 

(herbage on offer, herbage allowance, variability of herbage on offer). 

Keywords: GPS tracking, walking distances, precision livestock farming, diurnal patterns 

Introduction 

The behaviour of cattle on pasture is linked more or less to their locomotion, as large parts of their daily 

activity refers to grazing which is usually conducted while walking. Therefore, consideration of walking 

seems to play a key role in an attempt of behavioural understanding. 

In a study by Homburger et al. (2014), only 6.7 % of movement was accounted for by walking without 

grazing. In a study by Baudracco et al. (2013) cows on a pasture with lower herbage allowance spent 

more time walking. Foraging resources are the most obvious drivers of grazer distribution at pasture 

(Adler et al., 2001). The present study, therefore, compares three different GIs concerning the daily and 

hourly walking distances per cow. The question was to assess to what extent the grazing intensity and, 

hence, the availability or distribution of herbage, controls the activity of grazing cattle on semi-natural 

grassland ecosystems. Such information is needed if any decision-support tools in future smart farming 

systems will be based on the spatial animal movement and its prediction. 

Materials and methods 

The investigation was embedded in the long-term cattle grazing experiment ‘FORBIOBEN’ (located in 

Relliehausen, Solling Uplands, Lower Saxony, Germany, which was established in 2002 (Isselstein et 

al., 2007) and has been maintained in its current state since 2005. Since then, it compares three 

intensities of cattle grazing described by different target vegetation heights based on compressed sward 

height measurements, hereafter M: moderate grazing (6 cm), L: lenient grazing (12 cm) and VL: very 

lenient grazing (18 cm target vegetation height), replicated in a randomized block design of three 

paddocks (1 ha each) per grazing intensity. The management refers to a continuous grazing system in 

a put and take approach. During each stocking season (Apr/May- Sep/Oct), 27 pregnant, non-lactating 

Fleckvieh suckler cows grazed in all three grazing intensities, randomly assigned in groups and 

distributed among the paddocks. The three most important grasses in the grazing trial in 2017 were 

Festuca rubra, Lolium perenne and Cynosurus cristatus and for the dicot species: Taraxacum officinale, 

Trifolium pratense and Galium mollugo. 
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Table 1. Herbage on offer (HO), per grazing intensity in g DM m-² ± sd 

 2017 

(18 May – 14 Jun) 

2019 spring 

(24 May – 27 Jun) 

2019 autumn 

(6 Sep – 22 Sep) 

2020 

(11 Jun – 12 Jul) 

HO in M 235.1 ± 97.5 108.9 ± 70.6 81.5 ± 100.3 80.9 ± 54.2 

HO in L 318.7 ± 120.4 209.7 ± 100.6 166.5 ± 108.8 156.1 ± 69.2 

HO in VL 354.5 ± 123.8 222.0 ± 105.6 194.2 ± 119.9 172.2 ± 77.4 

At the beginning of each period, one cow per GI and replicate (randomly chosen) was equipped with a 

Vectronics GPS Plus (VECTRONIC Aerospace GmbH, Berlin) collar (weight: 1.36 kg). The GPS sensors 

in the collar recorded a signal about the location of the animal within the pasture. The activity sensor 

recorded data on the animal's activities. The main target variable with two temporal scales in the present 

study was the distance (m) per animal per day and also per hour within day. Geographic coordinates in 

Universal Transverse Mercator coordinate system (UTM) format were used to calculate the distance 

between two sequential positions with the Pythagorean theorem. The results were summed for hourly 

and daily (24-h) periods. The herbage on offer (Table 1) and its spatial variability in terms of the standard 

deviation (SD herbage) were derived from regular compressed sward height measurements and 

calibration cuts. Statistical analyses per period were carried out with R, with linear mixed effects models 

using the package ‘nlme’. The daily distance was regressed on the fixed effects of grazing intensity and 

date as well as their interaction. The cow nested in block was modelled random. Then a model reduction 

was performed from the global model using the MuMIn package. The model with the lowest AICc (Akaike 

Information Criterion for small sample sizes) was chosen as the final model. The hourly distance was 

log-transformed before analysis in order to improve normality of residuals. The period-wise average 

herbage on offer (HO) and the spatial heterogeneity of HO (SD herbage) were evaluated with the grazing 

intensity as fixed and block as random effect. 

Results and discussion 

The interaction between hour per day and the grazing intensity affected the hourly walked distance in 

all periods P < 0.001. Walked distances in grazing intensity M were largest for most periods (but not in 

2020), while L was lowest for most periods (not in 2017) and VL tended to range between them. Cattle 

usually take several steps between bites, which means that the activity of grazing is associated with 

walking. Difficulties in herbage intake arise when the vegetation is very short, sparse, or long and old, 

all of which will cause a larger requirement for grazing time and, hence, walking. In this respect, the 

pasture sward properties have a large effect on the daily grazing time, since cattle prefer leafy and 

digestible herbage (Cuchillo Hilario et al., 2017) and will seek this actively. With respect to the shorter 

vegetation and the lower amount of herbage on offer, the cows grazing in treatment M probably needed 

to enlarge their daily grazing area and, hence, their effort for walking. In extensively grazed grassland, 

the vegetation resembles a mosaic of foraging sites besides avoided ones, which indicates a higher 

heterogeneity (Tonn et al., 2018). With regard to the walking distance, it can be assumed that the pasture 

(heterogeneity) responds to animal movement as well as vice versa. Cattle return to known spots, as 

long as these spots are productive; therefore forage search is predictable (Fehmi et al., 2002). It is 

widely accepted that cattle activity shows diurnal patterns especially for the activity of grazing which is 

mainly correlated with the duration of daylight (Figure 1). 

Conclusions 

When evaluating efforts of cattle movement, the GI is probably no reliable indicator. In our study, cows 

increased their efforts under both the most intensive and also the least intensive grazing treatment. 

Thus, the herbage availability in terms of herbage allowance and also the spatial distribution and the 

heterogeneity of the sward have to be taken into account when aiming to design decision support tools 

in future precision livestock farming technologies. 
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Figure 1. Estimated means (±SE) of the average hourly distance (m) as influenced by the grazing period, 

grazing intensity and hour per day. M: moderate, L: lenient, VL: very lenient 
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Abstract 

Senecio jacobaea (S.j.) often grows in extensive grassland and poses a threat to farm animals due to 

toxic substances. Effective weed control requires site-specific counter measures targeting the toxic 

plants. This requires precise knowledge of the locations of the S.j. Here we present an approach adapted 

from success with Colchicum autumnale. When the flowers were blooming, the fields were mapped 

using a consumer-grade camera mounted on a drone. The resulting images can then be stitched 

together to obtain an orthomosaic of the whole field. The S.j. flowers were located in the images using 

a convolutional neural network with a U-Net architecture. The relatively low number of labelled ground 

truth images was compensated by applying image augmentation techniques during the training of the 

neural network. On the test dataset, 95% of the predicted S.j. flower locations were correct (precision), 

and 70% of the true locations were found by the detector (recall). 

Keywords: Senecio jacobaea, convolutional neural network, drone image, object detection 

Introduction 

Senecio jacobaea (S.j., also known as Jacobaea vulgaris, or ragwort) is a flowering plant with very 

distinctive 15-20 mm yellow flowers clustered in inflorescences of about 20-60 flowers (Söchting, 2010). 

Because of its toxicity, it poses a threat to grazing animals. On pastures, animals usually avoid the plant. 

However, the poisonous substance is conserved in hay and silage where the animals are unable to 

detect and avoid it. S.j. can be found on pastures or extensive grassland sites and is often dispersed 

from fallow land to agricultural land. Grassland with a high density of S.j. must be ploughed and resown 

with new grass. If only a few plants occur, they must removed manually. Both measures are 

unsatisfactory, as they require additional costs for machines and labour. Therefore, an automated and 

selective weed control system is required. For this, it is necessary to have precise information about the 

locations of the S.j. plants. For this reason, the aim of the research reported here is to investigate a 

method that locates S.j. flowers in images taken by a drone flying over the grassland site. An automated 

treatment tool could then be developed, which is able to control the weed efficiently based on the 

predicted S.j. locations. In Petrich et al. (2020) the considered detector (which we call flower detector in 

the following) is presented for locating Colchicum autumnale (C.a.) flowers in drone images. The 

approach is based on a convolutional neural network and was originally applied to S.j. in Forster (2020), 

on which the present paper is based. In contrast to other attempts in the literature (Zacharias, 2017), 

the flower detector does not rely on manual feature engineering, but rather learns the features of the 

flowers through the training. This makes it applicable to different kinds of plants (given suitable training 

data). 

Materials and methods 

The necessary image data were obtained on two grassland sites near Bad Überkingen/Burren and 

Konstanz, Baden-Württemberg, Germany. During the acquisition time between 22 July and 21 August 

2019, the S.j. were approximately 50-60 cm in height. On the site near Burren, the surrounding 

vegetation was about 25-30 cm tall and almost the same height as the S.j. on the site near Konstanz. 

The camera (Sony alpha 7 RII with a Sony lens FE 12-24 mm 4G and a resolution of 7952x5304 pixels) 

was mounted on a drone (Octocopter MK ARF Okto XL 4S12) flying roughly 10 m above ground. 

In order to keep the workload feasible, 13 disjoint drone images were chosen for manual labelling. For 

this, each inflorescence (or separate flower) was circumscribed by a polygon (instead of a coarser 

bounding box as in Petrich et al. (2020)), and all polygons belonging to the same drone image were 

drawn to a binary image (‘ground truth segmentation maps’) of the same size as the drone image. The 

result was a dataset of 13 colour drone images and corresponding ground truth segmentation maps, the 
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latter of which described the locations and rough shapes of the S.j. flowers and were thus the desired 

outputs of the trained detector. 

This ground truth dataset was split into a training dataset (comprised of 7 drone images and 

segmentation maps), a validation dataset (3 images), and a test dataset (3 images) at random. For 

details regarding the flower detector and its calibration to data, we refer to Petrich et al. (2020) and 

concentrate only on the differences in the following. The segmentation maps of the training dataset were 

further refined by removing all non-green pixels from the labelled polygons and were used to train 

different models of the flower detector (each having different hyperparameters) under the application of 

image augmentation. For the post-processing parameters, bounding boxes of the S.j. flowers were 

required, which were obtained by computing the bounding boxes of each connected component of the 

refined segmentation maps. Based on the validation dataset, the best model of the flower detector was 

selected. In total 48 models were evaluated corresponding to all combinations of the considered 

hyperparameters (four values for the base number of convolutional layers, three values for the initial 

learning rate, whether to use batch normalization, and which loss function to use, see Petrich et al. 

(2020)). The test dataset was used to judge how the (selected) flower detector model performs on 

previously unseen image data. 

Results and discussion 

The best model resulted from the flowing hyperparameters. It employed the (weighted) cross-entropy 

loss function and batch normalization, had a base number of convolutional filters of 8, and an initial 

learning rate of 0.00014211. 

Table 3. Cluster-based evaluation results for the validation and the test datasets of the best flower 

detector model 

 Validation Test 

 Summary Image 1 Image 2 Image 3 Summary Image 1 Image 2 Image 3 

#TP 298 103 194 1 225 206 13 6 

#FP 63 25 22 16 11 2 8 1 

#FN 49 26 21 2 96 96 0 0 

#TN 0 0 0 0 0 0 0 0 

Precision 0.826 0.805 0.898 0.059 0.953 0.990 0.619 0.857 

Recall 0.859 0.798 0.902 0.333 0.701 0.682 1.00 1.00 

F2 score 0.852 0.800 0.902 0.172 0.740 0.727 0.890 0.968 

Table 1 shows results of the cluster-based evaluation. Each labelled polygon of a drone image was 

considered and counted as a true positive (TP) if there was a foreground cluster in the predicted output 

of the (selected) flower detector model that intersected this polygon. If there was no corresponding 

prediction, it was a false negative (FN). All foreground clusters that did not intersect a polygon were 

considered false positives (FP). From these values the precision (‘probability that a predicted foreground 

cluster is actually a S.j. flower’), the recall (‘probability that a S.j. flower was detected’), and the F2 score 

(an aggregated value of precision and recall with more weight on the latter) were computed (Goodfellow 

et al., 2017). 

Table 1 shows good precision (0.826) and recall (0.859) for the validation dataset. More important are 

the results for the test dataset, where a very high precision of 0.953 could be achieved and a reasonable 

recall of 0.701. A more in-depth analysis showed that many of the false positives were yellowish leaves, 

but there were also cases where it was not clear from the image whether a yellow flower actually should 

have been labelled as S.j. flower. False negatives, on the other hand, tended to be smaller isolated 

flowers. The fact that all false negatives in the test dataset and most of the true positives were from a 

single drone image indicates that the ground truth dataset might have been too small for a definitive 

judgement on the flower detector's performance to locate S.j., and further interventions are necessary. 
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Compared to the results presented in Petrich et al. (2020), the recall is decreased (0.701 for S.j. vs. 

0.986 for C.a.). Even though the yellow flowers of the S.j. might be considered as not as distinct as the 

purple flowers of the C.a., the number of false positives and therefore the precision is better (0.953 for 

S.j. vs. 0.571 for C.a.). It is important to note that the ground truth dataset is with 13 drone images 

compared to 56 drone images (of the same resolution) much smaller in the present paper. Moreover, 

the interfering objects, which were one of the main sources of misclassification in Petrich et al. (2020), 

did not occur in the S.j. ground truth dataset and the resilience of the model regarding those could thus 

not be evaluated. 

Conclusions 

It was shown that the flower detector originally developed for C.a. in Petrich et al. (2020) can be used 

to locate S.j. in drone images with a recall of 0.70 and a precision of 0.95 on the test dataset. These 

initial results are very promising, but further research is needed in order to evaluate the detector's 

performance on larger and more diverse datasets (different site locations, surrounding vegetation, etc.). 

Another possibility is to train multiple models based on different dataset splits (e.g. using cross-

validation) and average their performances. For this, however, it is necessary to cope with the increased 

computational costs. 
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Abstract 

Virtual fencing (VF) technology applies stimuli to control grazing livestock without physical barriers. VF 

is a promising innovation in grazing livestock management, as it allows remote monitoring of animal 

movements and improved pasture utilization. This study aimed to determine whether the application of 

novel VF technologies in cattle grazing systems affects grazing animal forage intake. For this, 24 heifers 

(Simmental, age average: 462 days, live weight average: 396 kg) in 6 experimental groups were 

equipped with NoFence VF collars (® Nofence, AS, Batnfjordsøra Norway). Control groups had only 

physical fences (PF) and received inactive VF collars. In 3 periods of 12 days, one control and treatment 

group each were grazed on adjoining paddocks (866.5 ± 32.7m2) for 5h daily. Forage biomass samplings 

were done on days 1, 8, and 12 of each period in both paddocks. Herbage dry matter accumulation was 

determined by manual clipping near the soil surface. Data analysis showed that sampling time affected 

dry matter availability and, thus, herbage intake (HI) (P<0.001). However, there was no significant 

difference in HI between treatments. Therefore, it can be concluded that the VF technology did not affect 

HI of grazing heifers, even though it was previously unknown. 

Keywords: smart farming technology, virtual fencing technology, animal welfare, herbage intake, 

grazing management, sustainable farming practices 

Introduction 

Grasslands are an important element in European landscapes (Veen et al., 2009) and large herbivores 

play a decisive role in preserving this extensive biome. Management practices in pasture-based 

agricultural production systems greatly influence the extent of greenhouse gas (GHG) emissions, carbon 

dioxide retention, and the effect on biodiversity. Extensive and moderate grazing with rotational stocking 

has been shown to positively support these ecosystem services (Zhang et al., 2015; Zubieta et al., 

2021). Furthermore, management strategies with low-intensity and high-frequency grazing can have 

positive effects on animal performance, as the plant physiological state influences the animal’s short-

term herbage intake (Marin et al., 2017; Savian et al., 2021). However, labour requirements are higher 

in rotational grazing and similar practices compared to continuous grazing systems (Walton et al., 1981). 

Virtual fencing (VF) is a promising innovation in grazing livestock management, as it allows remote 

monitoring of animal movements and could improve pasture utilization while reducing the required 

labour for fencing and, thus, the economic viability of the production system. As VF is a novel technology, 

however, its effects on animal behaviour and productivity are largely unknown. Investigating possible 

effects on animal productivity is essential for establishing the economic benefits of applying the 

technology compared to established grazing systems. The aim of this study was, therefore, to determine 

whether the application of novel VF technologies in cattle grazing systems affects animal forage intake. 

Materials and methods 

The trial was approved by the animal welfare service of LAVES (Lower Saxony State Office for 

Consumer Protection and Food Safety - reference number: 33.19-42502-04-20 / 3388) and was 

conducted in August and September 2020 in the Solling Uplands, Germany, with 24 heifers (Simmental, 

462 ± 17.3 days age and 396 ± 32.7 kg live weight average) that were randomly assigned to six 

treatment groups. The effect of two fencing system treatments, i.e. virtual fence (VF) and a physical 

fence (PF) control, on forage intake was assessed during three subsequent 12-day grazing periods. 

Each period, the two groups were grazed five hours daily on adjoining paddocks of 1000 m2 size, so 

treatment groups refer to a combination of fencing system x period. For training purposes, an exclusion 
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zone was established within the paddocks with a VF or a PF-line (for details see Hamidi et al., 2021; 

these Proceedings). This exclusion zone was reduced in size after 8 days in each period. Due to the 

exclusion zone, the total paddock size was reduced to an overall average of 866.5 ± 32.7 m2. The VF 

groups were equipped with active, the control groups (PF) with inactive NoFence collars (® Nofence, 

AS, Batnfjordsøra Norway). Sward height measurements, using a rising plate meter (30 cm diameter, 

200 g plate weight), and forage biomass sampling were done in both control and VF paddocks at the 

beginning, the middle, and the end of each 12-day grazing period on days 1, 8 and 12, respectively. For 

this, the grass sward was clipped near the soil surface on two locations within paddocks using electric 

shears. Herbage dry matter accumulation was determined after drying the samples at 60°C for 48 h. 

Using a linear mixed-effects model in R software, the forage availability in dry matter (DM) per m2 was 

regressed on the fixed effects of fencing system and day of sampling within the period as well as their 

interaction. The period was used as random factor. Levels of significant influencing factors were 

compared post hoc using Tukey’s HSD test. 

Results and discussion 

The fencing system had no significant effect on the forage availability, which was affected only by the 

sampling date (P<0.001). Forage availability was significantly greater at the beginning of each period 

than the later samplings (Figure 1). This is to be expected, given that the animals grazed 5 hours per 

day in the plots. The average forage availability across periods in the VF treatment was 340, 255, and 

211 g DM m-2 at the start, middle, and end of the period, respectively. In the PF treatment, the 

corresponding average forage availability was 326, 213, and 160 g DM m -2, respectively. The fencing 

system treatment, thus, did not affect forage intake of the grazing heifers. In the PF treatment, the 

average forage intake was 3.1 kg DM per animal per day in the first eight days and 2.9 kg DM per animal 

per day in the last four days, respectively. In the VF treatment, the average forage intakes were 2.3 and 

2.4 kg DM per animal per day in the first eight and last four days, respectively. 

 

Figure 1. Estimated means of forage availability in g dry matter (DM) m-2 (±standard error), on day 1 

(start), day 8 (middle), and day 12 (end) of the experiment for cattle groups with physical fence (PF) and 

virtual fence (VF). 

Conclusions 

The absence of significant differences in forage availability between treatments in our preliminary results 

suggests that the VF technology does not affect herbage intake of growing young grazing cattle. Further 

investigations of individual live weight gain, forage quality, and forage digestibility along with stress 
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parameters will enable a holistic evaluation of the VF technology, to assess the efficiency of utilization 

of pasture herbage and effects on the animal and agronomic outcomes. 
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Abstract 

In seed production, a low water content of the crop before the harvest is of great importance. Pre-harvest 

crop desiccation devitalises the vegetation and consequently lowers the water content of plants to 

minimize machine load and drying costs. Simple and fast procedures which provide near real-time 

information about the current crop status are essential for the further success of seed production. The 

major aims of the study were (i) to determine the effects of three different herbicides used for crop 

desiccation in the seed production of birdsfoot trefoil (Lotus corniculatus) and snow clover (Trifolium 

pratense ssp. nivale). Subsequently we determined (ii) whether remote sensing technologies can be 

used to display the differences between the treatments. We performed the herbicide applications two 

(L. corniculatus) / three (T. pratense ssp. nivale) days before threshing, with a control plot serving as 

reference in both crops. A multispectral camera, mounted on an unmanned aerial vehicle was used to 

acquire spectral images from the plots before the herbicide application and before threshing. We 

harvested green-material and seed samples from all plots and analysed them for residual moisture 

content. Simple vegetation indices showed very promising results when comparing them with dry matter 

content of the plant biomass. 

Keywords: seed production, desiccation, remote sensing, NDVI 

Introduction 

Seed production of site-adapted grassland species provides the basis for stable and persistent forage 

crops, high forage quality and yields. However, due to the often-unfavourable site characteristics and 

the rapidly changing weather conditions, a successful harvest often proves difficult. Multispectral images 

from unmanned aerial vehicles (UAV) can provide timely, fast and cost-effective information of the 

current status of the crop (Wijesingha et al., 2020). Vegetation indices, for example the Normalized 

Difference Vegetation Index (NDVI), derived from these multispectral images can significantly support 

optimal management decisions in agriculture (Atzberger, 2013). 

In small-grain legume seed production, due to rapid seed shedding after seed maturity, the time window 

for harvesting is very narrow. A low water content of the crop is of great importance to minimize machine 

load and drying costs. In the case of pre-harvest crop desiccation, the vegetation is devitalised with 

chemical herbicides to lower the water content of plants allowing an earlier harvest. In legume seed 

production this practice has been used for more than 60 years (Wiggans et al., 1956). 

Some of the herbicides used in the past were banned or are in the process of being banned due to 

adverse effects on the environment or users. Due to the worldwide practice of crop desiccation among 

many different crops (Moyer et al., 1996; He et al., 2015), the performance of alternative herbicides also 

needs to be tested on an ongoing basis. 

The major aims of the pilot study were (i) to determine the effects of three different herbicides used for 

crop desiccation in the seed production of snow clover (Trifolium pratense ssp. nivale) and birdsfoot 

trefoil (Lotus corniculatus) and (ii) to determine whether NDVI derived from multispectral images can be 

used to display the different efficiencies between the herbicides. 

Materials and methods 

The trials were carried out in Baumgartenberg (Austria 48°13N, 14°45E; 237 m a.s.l.) in August 2020. 

We performed the herbicide applications two (birdsfoot trefoil) / three (snow clover) days before 

threshing, with a control plot serving as a reference in both crops. Herbicide I contains the chemical 

active ingredient Diquat (concentration 200 g l-1), the application rate was 1.4 l ha-1 dissolved in 300 l of 

water. This herbicide was in standard use for many years but is no longer approved in the EU (Exemption 
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permit for legume seed production in 2020 in AT). Herbicide II contains the chemical active ingredient 

Carfentrazone-ethyl (concentration 60 g l-1), the application rate was 1 l ha-1 dissolved in 300 l of water. 

Herbicide III contains the chemical active ingredient acetic acid (concentration 100 g l-1) and we used it 

with an application rate of 300 l ha-1. The plots had dimensions of 750 m² for snow clover and 900 m² 

for birdsfoot trefoil, except for the control group, which had 180 m². 

We used the model MK8-3500 (www.mikrokopter.de) as the UAV platform with a maximum load of 

7800 g. We mounted the MAIA S-2 multispectral camera, which is equipped with the identical 

wavelength intervals as the Sentinel-2 satellite of the European Space Agency (Nocerino et al., 2017). 

We combined the single spectral images to orthomosaics and calculated the NDVI. We conducted the 

multispectral acquisitions at two different times. We calculated the NDVI for the entire study area from 

images we took shortly before the herbicide application to record the initial situation (t1). To see if there 

is a correlation between the different herbicides and the signal of the multispectral image, we calculated 

the mean NDVI for the individual plots, subtracting a buffer area at the edges and the area of the wheel 

tracks from images we took shortly before the threshing (t2). To determine the desiccation effect of the 

herbicides we sampled 1 kg of the threshing residuals (straw = stems and leaves) from the middle strip 

of the plots in triplicate to compare the moisture content of the different treatments. We dried the samples 

with a warm air-drying system (50° C) to determine the dry matter content (DM) afterwards using NIRS 

spectroscopy. 

Results and discussion 

The results (Table 1) show a strong negative correlation between NDVI and DM content over both 

cultures (R² =0.945). The DM contents for both crops were lowest in the control group. This was in line 

with expectations, as these plants were apparently greener than in all other groups. The highest DM 

contents were achieved in each case in the plots treated with herbicide I. In snow clover, the plots treated 

with herbicide III showed slightly higher DM contents than the plots of herbicide II. In birdsfoot trefoil, 

the areas treated with Herbicide II showed slightly higher DM contents than the areas treated with 

Herbicide III. Based on these results, Herbicide I showed the best desiccation effect. Herbicides II and 

III showed significant effects compared to the control group, but the performance was not as strong as 

with Herbicide I. The NDVI of the control group decreased slightly in both crops between t1 and t2. The 

maturation process of the plants can explain this as they were in the seed ripening stage and natural 

drying occurred between the t1 and t2. 

At t2, the control group showed the highest NDVI and the herbicide I treated plots the lowest NDVI for 

both crops confirming the applicability of this remote sensing technique for water content monitoring in 

legume seed production.  

In both crops, there were no differences in NDVI between herbicide II and herbicide III. 

Table 4: Normalized Difference Vegetation Index (NDVI) and DM content before and 3 days after crop 

desiccation 

 Lotus corniculatus Trifolium pratense ssp. nivale 

 NDVI DM g kg-1 NDVI DM g kg-1 

t1 control group 0.71  0.34  

t2 control group 0.64 152.3 0.28 333.9 

t2 herbicide I 0.37 231.8 0.10 365.2 

t2 herbicide II 0.50 185.5 0.13 355.9 

t2 herbicide III 0.51 167.4 0.13 359.8 

Conclusions 

All herbicides were able to enhance crop desiccation and decreased the NDVI of the crops. Herbicide I 

was most effective in increasing the DM content this could also be shown in the decreasing NDVI. In 

relation to the control group, the alternative herbicides II and III showed in both crops that they were 

able to speed up desiccation. 
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Remote sensing technology may be a suitable tool in the future to show differences in the desiccation 

of seed productions and supply information to improve management. In order to validate the results 

found in this pilot study, further research is necessary. 
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Abstract 

Grazing animals, especially dairy cattle, have long been a feature in the cultural landscape of Central 

Europe. Smart farming technologies are one way to improve pasture management. In this study, the 

virtual-fencing technology (Nofence) was used to manage heifer grazing in an attempt to establish a 

training protocol. The heifers had not experienced virtual fencing previously. Training took place on small 

paddocks (1000 m2). Two treatments (four heifers per group) were compared in three repetitions (each 

of 12 days). One virtual-fence-line, which is set up by GPS coordinates (the collars send acoustic signals 

followed by an electric impulse as a warning if the animals approach the line), separated the pasture of 

the virtual-fence-group into accessible or non-accessible areas. The control group had a physical-fence-

line. Each repetition followed the next successively on different paddocks with a new group. Training 

was divided into three sections: visual support of the virtual fence by a physical barrier (first 2 days), 

only virtual border without visual support, moving the virtual-fence-line (on day 8). Results showed that 

each heifer was able to learn the virtual fencing cues. The main aspects of cattle behaviour on pasture 

were not affected by the physical/virtual-fence-line. 

Keywords: associative learning, smart farming technology, animal welfare, time budgets 

Introduction 

Smart farming technologies (especially virtual fencing (vf)) might be the key drivers to reconcile 

agronomic and ecological interests under the premise of bringing livestock back into the landscape. Vf-

boundaries can be shifted whenever it is desired (Campbell et al., 2017) and herbage allowance can 

easily be changed. This represents an opportunity for improved pasture management, especially for 

environmentally sensitive areas, where maintenance and implementation of physical fences (pf) are 

difficult. In the current study, we used vf-collars (Nofence, Norway), which emit acoustic signals as the 

cattle approach the vf-line. An electrical impulse is administered if the animal continues moving forward. 

Conditional learning should ensure that the cattle become trained over time to avoid the electrical 

impulse by reacting to the acoustic signal. Cattle behaviour on pasture should not be affected. In the 

present experiment, cattle behaviour was studied in the vf-system compared with a common pf-system. 

As the training of individual cattle is impractical in a commercial setting (Colusso et al., 2020), we used 

groups of four heifers each to develop a training protocol that would allow safe learning of the vf-

technology and could be used in future for more detailed studies on the potential of vf for grassland 

management. 

Materials and methods 

The present experiment, located in Relliehausen, Solling Uplands, Lower Saxony, Germany, 

investigated the (learning) behaviour of 24 heifers (Fleckvieh, 14-16 months, 320-451 kg initial weight) 

grazing in two treatments (vf/pf) compared over three periods. They were trained in two paddocks (1000 

m² each) every day between 10 a.m. and 5 p.m. After the daily training, cattle were housed and had 

access to hay in a stable adjacent to the training site. An exclusion zone within the paddocks was 

established with a vf/pf-line. Four heifers per group were compared in three successive periods (12 days 

each) from 17 Aug 2020 to 25 Sept 2020. All heifers wore Nofence collars (® Nofence, AS, Batnfjordsøra 

Norway), which were inactivated for the pf-groups. Acoustic signals (increasing melody) followed by an 

electric impulse if the animals continued moving towards the vf-line were emitted by the activated collars 

of the vf-groups. For the vf-groups, the training periods were divided into different learning sections to 

adapt the animals to the vf (Figure 1). 
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Figure 1. Learning sections of the virtual fencing group: day 1 complete pf + vf-line, day 2 fence posts + 

vf-line, day 3 to 7 only vf-line, day 8 to 12 shifted vf-line 

During the whole experiment, the cattle behaviour was continuously observed (one observer per group 

continuously recorded the individual behaviour of each of the four animals; 2 h a.m., 2 h p.m.) using the 

app ‘Observasjonslogger’ by Morten Sickel. Statistical analyses were carried out with R 4.0.3. Linear 

mixed effect models were used with the fixed effects: group, observation day, time of day (a.m./p.m.) 

and the nested random effects: period, group, animal-ID. The trial was approved by the animal welfare 

service of LAVES (Lower Saxony State Office for Consumer Protection and Food Safety – ref. number: 

33.19-42502-04-20 / 3388). 

Results and discussion 

No heifer crossed the vf-line during the experiment. Average numbers of acoustic and electric signals 

per heifer and hour were 2.7 and 0.3, respectively (Figure 2). 

 

Figure 2. Acoustic signals/electric impulses per hour per heifer per day (mean ± se) 

Time budgets for grazing and lying/ruminating, as indices for animal welfare showed no significant 

differences between the groups. Grazing was the main activity (pf-group: 75 ± 16%; vf-group: 73 ± 17% 

mean ± se) per day and it was significantly affected (P < 0.0001) by day of the training/time of the day 

in both groups. Daily time budgets for lying/ruminating (pf-group: 11 ± 12 %; vf-group: 13 %) were also 

significantly affected (P < 0.0001) by day of the training/time of the day. These values were similar to 

those for night-sheltered cows investigated by Homburger et al. (2015), who reported that grazing 

accounted for 55-75% and resting for 14-33% of records. The lack of differences in observed 

behavioural time budgets between the vf- and pf-groups in our study seems to be an indication that the 

animals' well-being was not affected by the use of the vf-technology. Supporting cattle learning vf-

technology with the visual cue in the first two days might have enhanced the decisions by cattle to 

reverse response, as crossing the vf-line was impossible at the beginning. If cattle failed to learn the 

association between acoustic signals and electrical impulse, their welfare could be compromised. This, 

however was not the case in this investigation as no heifer had exceeded the value of 4 electrical 
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impulses per day at the end of the study, which is regarded as a criterion for successful learning (Eftang 

& Boe 2019). All heifers learned to avoid the electrical impulse by reacting to the acoustic signal. It could 

be assumed that increasing number of acoustic signals during the study period (Figure 2) reflects the 

cattle’s increased motivation to approach the vf-line because of the decreasing forage availability (for 

more details see Grinnell et al. (2021) in these Proceedings). Cattle were observed grazing near the vf-

line until the last note of the melody before they turned away to avoid the electrical impulse. As assumed 

by Campbell et al. (2019), shifting the vf-line affected the number of interactions. Wilkinson et al. (2019) 

suggested that the typical error of GPS positioning could hamper the learning process because cattle 

might receive signals even though they were away from the vf-line. A few ‘unlogical’ signals could be 

observed, but after a short irritation cattle continued interacting with the acoustic signals in order to 

access grass that met their grazing preferences. Exclusion worked and the vf-system proved to be 100% 

effective, which was confirmed by visual observation. 

Conclusions 

In the present study, training the cattle according to the described approach, divided into different 

learning sections, reliably avoided crossing the vf-line. Cattle behaviour at pasture was not affected by 

using the virtual fence system. Establishing the present training protocol and the experiences of this 

study are considered to support current and future research exploring the vf-technology and its 

promising possibilities. 
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Abstract 

Genetic selection for feed efficiency is hindered by the cost and difficulty of measuring individual feed 

intake. The objective was to explore the use of phenotypic proxies, namely surface temperature (ST), 

rectal temperature (RT), feeding behaviour and physical activity, to predict feed efficiency variables, i.e. 

feed conversion efficiency (FCE) and residual feed intake (RFI), in grazing dairy cows. Two groups of 

14 Holstein and 14 Swiss Fleckvieh dairy cows were investigated during two mid- and one late-lactation 

period. During 7-day measuring periods, feeding and rumination behaviour, activity and individual 

herbage intake using the n-alkane marker technique of each cow was recorded. The ST was recorded 

indoors, once for each measurement period after morning milking at multiple body locations with a 

thermal camera. Estimated average within-herd feed efficiency was 0.78 (SD = 0.17) for FCE and -1.18 

(SD = 1.96) for RFI with no significant difference (P > 0.05) between the breeds. FCE and RFI were best 

explained by maximum right front feet ST (R2 = 0.34) and time interval between 2 consecutive foot 

strikes (R2 = 0.17), respectively. The relationships were weak to very modest; however, they might be 

further improved by including other features such as milk and blood variables. 

Keywords: eating, rumination, behaviour, surface temperature, feed efficiency 

Introduction 

Achieving greater feed efficiency is one possible approach to improve sustainability of dairy production. 

Genetic selection for feed efficiency is greatly limited by the high costs associated with individual feed 

intake measurements. Previous studies (Cantalapiedra-Hijar et al., 2015; Decruyenaere et al., 2015) 

have identified biomarkers for nutrient utilization that are easier to implement, less stressful for animals 

and less expensive. Temperature regulation and animal activity have been identified as important 

aspects of physiological variation that could affect feed efficiency in dairy animals (Herd and Arthur, 

2009). The objective of the study was to explore the use of the biomarkers ST, RT, feeding behaviour 

and activity, to predict feed efficiency variables, namely FCE and RFI, in grazing dairy cows. 

Material and Methods 

The study comprised two mid-lactation and one late-lactation experimental periods. Each entailed a 21-

day adaption period and a 7-day measurement period. Per experimental period twenty-eight lactating 

dairy cows, approximately half of them primiparous, were grazed on established rotational pasture. The 

cows were evenly divided between the Swiss Fleckvieh and Swiss Holstein breeds. Individual herbage 

intake was estimated during grazing with the n-alkane double indicator technique (Rombach et al., 

2019), and if concentrate was supplemented it was registered individually through the automatic feeding 

station. Based on the individual intakes of cow’s FCE, expressed as total dry matter intake/energy-

corrected milk yield, and RFI, expressed as effective minus required total dry matter intake, were 

computed. The behavioural characteristics (e.g. rumination, bites and strides) were recorded throughout 

the measurement periods with a halter and pedometer (RumiWatch, Itin and Hoch GmbH, Liestal, 

Switzerland). The recorded data were processed using the evaluation software RumiWatch converter 

version 0.7.3.36. 

Thermal images were recorded indoors, once before morning feeding, according to manufacturer’s 

recommendations, with an infrared camera (FLIR T620, FLIR Systems Inc., Wilsonville, OR, USA). The 

camera measured the surface temperature of body parts of the cows via radiated heat. The evaluated 

anatomical regions for the ST were eyes, ears, head, cheeks, snout, ribs, flanks, limbs, udder and rear 

area. The RT of each animal was measured immediately after thermal imaging using a digital 

thermometer (SC 12, SCALA Electronic GmbH, Stahnsdorf, Germany). The recorded data (milk yield 

and composition, body weight, behaviour, activity, ST and RT) were averaged per cow and period, as 
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herbage intake was estimated per measurement period. The relationships between feed efficiency and 

ST, RT, feeding behaviour and physical activity were analysed with a linear model in R. Measurement 

period and breed were included in the model as fixed effects. 

Results and discussion 

The RFI (P = 0.19) and FCE (P = 0.10) values were not different between breeds. However, considerable 

between-animal variations for FCE (0.78, SD = 0.17) and RFI (-1.18, SD = 1.96) were observed, which 

is in accordance with a previous study (Arndt et al., 2015). The ST tended to be higher in efficient cows. 

According to Case et al. (2012), more efficient animals have a higher metabolic rate and therefore the 

extra excess heat is lost as radiant heat. The maximum ST of right front feet (23.8°C, SD = 4.7; R2 = 

0.34) and the minimum cheek (24.9°C, SD = 4.1; R2 = 0.14) best explained the FCE and RFI, 

respectively. Feed efficiency could not or only very weakly be predicted with RT (37.7°C, SD = 0.4) at 

R2 = 0.09 and R2 = 0.00 for FCE and RFI, respectively. 

Table 1. Prediction of feed efficiency of grazing primiparous and multiparous Swiss Holstein and Swiss 

Fleckvieh cows with behaviour, activity and thermal biomarkers 

Biomarker 

R2  P-value 

FCE1 RFI2  Breed Parity 

Eating and rumination activities3 0.30-0.31 0.10-0.13  >0.05 >0.05 

Locomotion activities4 0.25-0.30 0.08-0.17  >0.05 >0.05 

Surface temperatures of body locations (°C)5 0.26-0.34 0.06-0.14  >0.05 >0.05 

Rectal temperature (°C) 0.09 0.00  0.94 0.13 

1 FCE = feed conversion efficiency, 2 RFI = residual feed intake 

3 Eating and rumination activities included elements such as eating, chewing, drinking and rumination 

4 Locomotion activities included elements such as walking, lying, standing and strides 

5 Surface temperatures of body locations were eyes, ears, head, cheeks, snout, ribs, flanks, limbs, udder and rear 

Feeding behaviour makes an important contribution to the underlying variation in feed efficiency of cattle 

(Fitzsimons et al., 2017). The amount of time spent grazing (605 minutes per day, SD = 55; R2 = 0.30) 

and amount of time spent with other activities (355 minutes per day, SD = 88; R2 = 0.17)) excluding 

activities attributable to any ruminating, feed intake or drinking activity, best predicted FCE and RFI, 

respectively. This is in accordance with Kenny et al. (2018), as low feed efficient cattle spent 

proportionately more time eating than their high feed-efficient contemporaries. Physical activity 

contributes to energy consumption and is interconnected with feeding-related behaviour, especially 

under grazing conditions. In accordance with Kenny et al. (2018) the physical activity (e.g. walking) was 

higher in low feed-efficient compared with high feed-efficient cows. The FCE and RFI were best 

explained by the average duration (1679 ms per stride, SD = 42.6) of one stride of the leg (R2 = 0.17 

and R2 = 0.30, respectively). Based on our study, a more efficient cow (low RFI and FCE) would spend 

less time grazing, have cooler body extremities and a lower core temperature compared with a less 

efficient cow. Biological differences between more and less efficient dairy cows may be useful to select 

the most efficient animals. 

Conclusions 

Feeding behaviour, ST, RT and physical activity were correlated with feed efficiency traits and thus 

indicate the potential for application of some of these measurements in the assessment of efficiency 

traits in dairy cows. The relationships observed so far were modest but might be improved by their 

combination and by including other characteristics such as milk and blood variables. Moreover, these 

findings open the possibility of considering alternative methods to assess feeding efficiency through 

biological and behavioural proxies. 
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Abstract 

Monitoring the health and welfare of dairy cows in grazing situations is time consuming. Most monitoring 

systems available on the market were developed for use with housed cattle and attain low accuracies 

when used on pasture. Changes in grazing behaviour may serve as an indicator for heat and also health 

issues. Recording the grazing behaviour automatically with a monitoring system enables a reliable 

detection of oestrus and early identification of health disorders, and it provides supporting information 

for managing pasture-based dairy farms. Therefore, in this study, different prediction models for the 

automated detection of grazing behaviour were evaluated. Eight dairy cows were equipped with a 

monitoring system containing a three-dimensional accelerometer and a gyroscope. Ground Truth data 

were obtained from labelled video recordings. A Random Forest prediction model trained on an 

orientation-independent feature set and a window size of 5 s without overlaps achieved the highest 

accuracy. This model detected grazing with a sensitivity, specificity, and accuracy of 91.8%, 92.7% and 

92.2%, respectively. The model confused grazing with walking, and by walking while chewing. To obtain 

the total feeding time and to reduce the misclassification with walking (plus chewing), another model for 

the detection of chewing while standing and walking is needed. 

Keywords: dairy cows, grazing, monitoring system, health monitoring 

Introduction 

Grazing of dairy cows at pasture is gains importance as it is associated with various benefits for the 

animals' health and welfare (Flury et al., 2016; Hernandez-Mendo et al., 2007) and as the demand, e.g. 

from society, for improving the welfare of livestock is increasing. In grazing situations, visual monitoring 

of the health and welfare of dairy cows is time consuming. Increasing herd sizes impede the supervision 

of individual animals and complicates the herd and pasture management. Smart farming solutions like 

monitoring systems continuously record different behavioural patterns and their changes, providing 

useful information for the detection of oestrus (Holman et al., 2011), health disorders and challenges 

(Stangaferro et al., 2016), and supply the farmer with details for pasture and herd management. Besides 

other behavioural patterns, feeding behaviour is a useful indicator as it is influenced by oestrus, health 

disorders, and challenges like heat load. Zebari, Rutter & Bleach (2018) found reduced feeding times 

on the day of oestrus. In the study of Sprinkle et al. (2000) changes in daily grazing time were used for 

the detection of heat load in cattle. The variation in feeding behaviour can be used by monitoring 

systems. In order to predict grazing behaviour from the sensor data provided by a monitoring system, a 

suitable model has to be found. The goal of our study was to evaluate a model for the automated 

distinction between grazing and non-grazing behaviour of dairy cows aiming at developing a monitoring 

system for dairy cows with access to pasture. 

Materials and methods 

Data collection was conducted in two rounds of two days each on a dairy farm in Upper Bavaria, 

Germany. Five (round 1) and eight (round 2) clinically healthy, multiparous dairy cows were equipped 

with the prototype of a monitoring system (Blaupunkt Telematics GmbH) attached to a collar. The system 

was located at the lower neck and contained a three-dimensional accelerometer and a gyroscope. Data 

were collected with a frequency of 10 Hz. 

Average parity of the selected cows was 3.4 (± 0.5) in round 1 and 3.5 (± 1.2) in round 2. The cows were 

227 (± 28) and 285 (± 40) days in milk (DIM) in the first and second round, respectively. The cows were 
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grazed full-time except for one hour around each milking at 0700 am and 0500 pm. For the collection of 

Ground Truth data, four cameras (GoPro HERO 5) were attached to tripods, placed around the herd in 

adequate distance to avoid disturbance and moved frequently to record the behaviour of the selected 

cows as continuously as possible. Following the observation, video data were labelled based on an 

ethogram (Table 1). The definition of grazing behaviour was based on that used by Nielsen (2013). Non-

grazing behaviour included walking, standing, chewing and other behaviour. 

Table 1. Ethogram for labelling of the behaviour observed by cameras. 

Behaviour Definition 

Grazing 
The animal bites off grass, chews and swallows, and moves forward with a lowered head. 
From the first grip of grass to lifting the head higher than the carpal joint. 

Walking 
The animal moves forward at walking pace and makes two or more consecutive steps in one 
direction. 

Standing The body of the animal is supported by at least three limbs. 

Chewing The jaw of the animal is in chewing motion masticating grass. 

Other 
Lying, lying down, standing up, ruminating, social behaviour, exploratory behaviour, comfort 
behaviour 

The data sets (sensor data and labelled data) of three animals were used to train the prediction model. 

Random Forest, an orientation-independent feature set and a window size of 5 s without overlapping 

proved to achieve the highest accuracy in the development process. 

The data sets of the remaining animals were used to evaluate the model. Model output and Ground 

Truth were compared second by second. Correctly identified grazing and non-grazing behaviour was 

defined as true positive (TP) and true negative (TN), respectively. Grazing behaviour that was classified 

as non-grazing by the model was defined as false negative (FN), non-grazing behaviour that was 

classified as grazing was defined as false positive (FP). Sensitivity, specificity, and accuracy were 

calculated. 

Results and discussion 

In total, 102.39 h of sensor data with corresponding video data were available for the evaluation of the 

model. Due to differences in operation time, animals contributed different shares to the total time (7.97 h 

- 21.65 h). Total sensitivity, specificity and accuracy of the model were 91.8%, 92.7% and 92.2%. 

Accuracy per animal ranged from 89.6% to 95.7%. 

4.51 h of grazing behaviour were falsely classified as non-grazing behaviour (FN). Non-grazing 

behaviour misclassified as grazing (FP) amounted to 3.65 h. False positive time was studied more 

closely for three animals. Most of the time, grazing was confused with walking while chewing (36.0%) 

and walking without chewing (25.4%).  

Lower performance values were achieved by a model for the detection of grazing behaviour based on 

accelerometer data developed by Nielsen (2013). They used the same definition for grazing behaviour 

and a sampling frequency of 5 s (besides other sampling frequencies). 

A model developed by Molfino et al. (2017) detected grazing behaviour with a higher sensitivity and 

specificity but the comparison between Ground Truth and model output was conducted at 1 min-

intervals, regarding the dominant behaviour within the minute. In contrast to our definition, Molfino et al. 

(2017) included chewing with head up in grazing behaviour; this behaviour was the one most confused 

with grazing in our findings. 

The misclassification of grazing with walking (plus chewing) could be based on the window size. 

Although, 5 s windows achieved the highest accuracy, grazing behaviour - as defined in our study - is 

interrupted by short sequences of walking (plus chewing). If the duration of those sequences is ≤ 5 s, a 

successful prediction is impossible with a window size of 5 s. 
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Conclusions 

Compared to other models included in monitoring systems for dairy cows, the evaluated model detected 

grazing with reasonable accuracy. To obtain total feeding time on the pasture, another model needs to 

be developed for detecting chewing while standing or walking, as those patterns are part of the foraging 

behaviour. Developing a model for chewing (while standing or walking) could also help with reducing 

the FP time of our model. 
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Abstract 

Nutrient and sediment loss from agricultural land is one of the major contributing factors in declining 

water quality. This research aims to quantify sediment and nutrient loading rates due to riverbank 

erosion using airborne LiDAR and field-collected data for sites in the Blackwater catchment, Northern 

Ireland. Using 2014 and 2020 LiDAR Digital Terrain Models, image differencing was performed in 

ArcMap to determine volume changes in riverbank elevation to quantify erosion rates. This was 

supported by cores of bank material, which were collected in situ for analysis of bulk density and total 

extractable phosphorus to determine sediment and phosphorus loading rates. We conclude that LiDAR 

and the collection of basic field data represent an innovative means to quantify erosion and nutrient 

loading rates without needing intensive time-consuming field surveys. 

Keywords: LiDAR, riverbank erosion, nutrient and sediment loading rates 

Introduction 

Riverbank erosion is caused by many factors including climate, topography, and land use (Thoma et al., 

2005). As stream sediment and phosphorus in agricultural systems can originate from both fields and 

riverbanks, it is difficult to determine the proportions delivered from each of these sources. To manage 

these losses, it is vital that the dominant contributing source is known (Thoma et al., 2005). Light 

Detection and Ranging (LiDAR) is useful for identifying erosion, as performed by Thoma et al. (2005) at 

a catchment scale (km2), and facilitates a change in direction from in-field sampling studies. Few studies 

have, however, investigated this technique at a high spatial resolution alongside appropriate field data 

at the field scale. This research aims to quantify riverbank erosion, P, and sediment loading rates at four 

field-scale locations using LiDAR and the collection of field data. This will guide suitable management 

practices to help achieve the EU Water Framework Directive targets. Details of the four study sites are 

provided in Table 1. Earlier unpublished work at these sites revealed highly variable soil P content using 

gridded soil sampling (35 m grid) with these results interpolated in ArcGIS using kriging. 

Table 1. Description for the four field sites in the Blackwater catchment. 

Site Area covered by 
Riverbanks A and B 

(m2) 

Land Use Length of 
Stream Channel 

(m) 

Riverbank Vegetation 
Characteristics 

1 A: 937 B:818 Grazing & Silage 364 Grass 

2 A:1452 B:1579 Grazing & Silage 462 Grass & small shrubs (<0.5 m ht.) 

3 A:1891 B:776 Grazing & Silage 525 Grass & shrubs (<0.3 m ht.) 

4 A:698 B:786 Grazing 339 Grass & small trees (c. 1-2 m) 

Materials and Methods 

To calculate erosion, we compared airborne LiDAR processed as Digital Terrain Models (DTM) for 2014 

and 2020 at the Blackwater catchment in Northern Ireland at an elevation accuracy of ±0.15 m. Three 

riverbank bulk density samples were collected per site on 18 August 2020 using aluminium rings with a 

volume of 222 cm3. These were hammered into the bank face below the root mat of ground vegetation. 

Bulk density was determined by the methods of Cresswell and Hamilton (2002), with total extractable P 

determined using the Olsen P methodology (Olsen and Sommers, 1982). 
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To calculate annual erosion rates, sediment, and P loads in ArcMap, the volume change value was 

divided by six to give an average annual erosion rate (reflecting the six-year spacing between the LiDAR 

imagery). DTM datasets were clipped to the site boundaries before producing an image differenced 

raster (in the Z dimension) using the raster calculator function under the general expression of “2014 

LiDAR Dataset – 2020 LiDAR Dataset”. With this expression, positive values represented erosion and 

negative values indicated deposition. To refine this to specific bank areas, manual digitising was 

performed with bank widths based on site-specific knowledge. Clipping was performed to these zones 

on the differenced raster. Riverbanks were designated as Riverbank A (left bank) or B (right bank), 

allowing any differences in erosion to be investigated in terms of channel morphology. While Thoma et 

al. (2005) analysed net volume change, this work focused only on bank erosion and its release of 

sediment and nutrients. As such, the function of “extract by attributes” was used with an expression of 

“value > 0”, removing any negative values of deposition from the differencing rasters. The rasters 

containing only positive erosion values were used in zonal statistics to calculate the total elevation 

differences across each bank. This summed value of volume change was divided by the bank’s spatial 

extent to give an average change in elevation, which represents the average erosion rate. For average 

mass wasting rates, this value was multiplied by average bulk density, and to calculate the average 

annual input of sediment for the bank the average mass wasting rate was multiplied by the bank’s spatial 

extent. Finally, to calculate the average annual inputs of total extractable P, the average input of 

sediment was multiplied by the average total extractable P concentration. All values were determined 

for each bank and then summed to give an overall average value per site. 

Results and discussion 

Table 2 shows the annual erosion, P, and sediment loading rates for each site and their riverbanks. 

While these calculations are average annual rates, consideration must be made for the dynamic nature 

of rainfall and river flow and how this influences erosion. Site 1, 2, and 4 show low erosion rates, with 

evidence for site-specific variability such as Site 2 Riverbank A showing deposition, whereas Riverbank 

B indicates erosion. The average mass wasting of sediment shows variability between Sites 1, 2, and 

4, with site 4 showing the greatest average erosion rate for these sites. This is due to livestock accessing 

this site’s banks and causing sediment displacement. This can lead to higher nutrient loading through 

animal excretion directly into the waterway. Despite having the highest erosion and sediment loading 

rates, Site 4 does not have the highest P loading rates due to fewer nutrient hotspots in-field compared 

to the P inputs at Site 1, which had widespread soil P hotspots in-field. 

Table 2. Average annual riverbank erosion, sediment, and phosphorus loading rates calculated for the 

four study sites. 

Field Site  Average Annual Erosion 
Rate (cm yr-1) 

Average Mass Wasting 
inputs of Sediment (kg yr-1) 

Average Total Extractable 
Phosphorus Inputs (mg yr-1) 

Site 1 1.80 1.92 53.23 

Site 1 Riverbank A 1.40 1.54 42.55 

Site 1 Riverbank B 0.40 0.38 10.68 

Site 2 0.20 0.35 7.62 

Site 2 Riverbank A NA Deposition Occurring NA Deposition Occurring NA Deposition Occurring 

Site 2 Riverbank B 0.20 0.35 7.62 

Site 3  79.10 128.14 2930 

Site 3 Riverbank A 50.20 103.68 2370 

Site 3 Riverbank B 28.90 24.46 560 

Site 4 3.14 2.47 17.85 

Site 4 Riverbank A 2.34 1.79 12.90 

Site 4 Riverbank B  0.80 0.68 4.95 

Site 3 previously showed largely optimum soil P index values in-field. However, this site experienced 

extensive annual bank erosion rates, significantly exceeding the rates at any other site. There is 

evidence of channel morphology concentrating erosion onto Riverbank A. This disparity is reflected in 

sediment and P loading rates, which exceed any other site. The total annual sediment release dwarfs 
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the other mass wasting values. In terms of P released, this exceeds the other sites, despite Site 3 

showing the fewest P in-field hotspots from soil sampling. These high loading rates highlight the issues 

for achieving good water quality concerning bank erosion and the need for intervention at this site. 

Conclusions 

In agricultural catchments, sediment and nutrients can originate from soil erosion/runoff or riverbanks, 

so it is important to understand these sources to manage waterways effectively. By using DTMs derived 

from LiDAR, severely eroding riverbanks can be identified, avoiding field intensive surveys. Our 

methodology can be applied in this regard to help achieve WFD targets. Riverbank sources are difficult 

to quantify due to the site-specific nature of erosion and deposition. The ability to calculate sediment 

and nutrient loading rates is important for determining the proportion of contributing source areas. 

Although there are limitations with the accuracy of LiDAR, particularly for heavily vegetated areas, no 

other survey method exists to determine mass wasting rates as efficiently. Furthermore, this 

methodology can be replicated at various spatial and temporal scales. LiDAR allows us to acquire 

information remotely, rapidly, and at a high degree of accuracy. Given the need to improve water quality, 

this potential affords innovative opportunities for targeted management strategies. 

Acknowledgements 

Funding available via the NERC/UKRI QUADRAT DTP. Thanks go to Gillian Nicholls (AFBI) for fieldwork 

assistance and the Centre for GIS and Geomatics at Queen’s University Belfast. 

References 

Cresswell H. P. and Hamilton (2002) Particle Size Analysis. In: Soil Physical Measurement and Interpretation for 

Land Evaluation. (Eds: McKenzie, N. J., Cresswell, H. P. and Coughlan, K. J.). CSIRO Publishing: 

Collingwood, Victoria. Pp. 224-239.  

Olsen S. R. and Sommers L. E. (1982) Phosphorus. pp. 403-430. In: A. L. Page, et al. (eds.) Methods of soil 

analysis: Part 2. Chemical and microbiological properties. Agron. Mongr. 9. 2nd ed. ASA and SSSA, 

Madison, WI. 

Thoma D. P., Gupta S. C., Bauer M. E. and Kirchoff C. E. (2005) Airborne laser scanning for riverbank erosion 

assessment. Remote Sensing of Environment, 95, 4, 493-501.  

  



 
Grassland Science in Europe, Vol. 26 – Sensing – New Insights into Grassland Science and Practice 199 

 

Using GPS sensors to estimate automatically the time dairy cows spend 

on pasture 

Fischer A., Charpentier C., Lonis W., Philibert A., Allain C. and Lebreton A. 

Institut de l’Elevage, 149 Rue de Bercy, F-75595 Paris, France 

Abstract 

Since 2007, use of the 'Pasture Milk' labelling specification has grown further in Europe. It requires the 

cows to spend a minimal duration on pasture. Our objective was to develop and test an algorithm that 

estimates the time dairy cows spend outside the barn (T-Out), through an automatic detection of the 

barn, using a clustering method analysing the data recorded by embedded GPS sensors. Eight Holstein 

cows were equipped with a GPS collar during 56 days while having free-access to pasture at least 10 

h/d. The reference T-Out (T-Outref) was calculated with a RFID antenna at the building entrance. The 

classification of T-Out as more (or less) than 6 h/day of pasture, as required for the French 'Pasture Milk' 

specification, matched the classification given by the T-Outref for 100% of the data. No effect of the 

number of cows equipped with a sensor has been observed on the estimation of average T-Out. 

However, when too few cows are equipped, the estimation of the whole herd’s T-Out will be biased 

because some cows tend to stay in the barn. The estimation of T-Out using GPS collars seems 

promising to objectify the 'Pasture Milk' specification. 

Keywords: grazing time, geo-tracking, dairy cattle 

Introduction 

Naturalness has been identified as a key request by citizens worldwide (Schuppli et al., 2014; Cardoso 

et al., 2016; Delanoue et al., 2018) in terms of their expectations regarding dairy cattle production. There 

are also demands for more transparency about the way livestock are managed (Frewer et al., 2005). To 

counter a reduced consumption of dairy products, several actors within the dairy sector in Europe have 

developed a label which certifies that cows spend time outside the barn. A minimum daily and yearly 

duration of access to pastures with a minimal accessible land area, for a minimal percentage of the herd 

are required for this specification, which is highly variable across dairies. Its checking is based on audits 

and notes taken by farmers, and is therefore time-consuming. Our study aimed at developing an 

algorithm which estimates the time dairy cows spend outside the barn using geotracking-embedded 

sensors to automatize part of the specification checking. 

Materials and methods 

The time spent outside (T-Out) the barn has been monitored during 56 d for 9 lactating Holstein dairy 

cows which were part of a herd of 70 Holstein cows at the experimental facility of the Chambre 

d’Agriculture at Derval (France). Cows had to stay in the barn for complementary ration feeding and 

animal care tasks in the evening for about 2.5 h, then stayed on pasture after milking until 8:00, and had 

free access between the barn and pasture thereafter. The nine cows were equipped both with a 

pedometer (Nedap, Netherlands) and a GPS mounted collar (Digitanimal, Spain). An antenna placed in 

the corridor between the barn and the exit to pastures recorded the passage of each cow equipped with 

the pedometer and was used to calculate the reference T-Out (T-Outref). The GPS position was emitted 

every 11 minutes using the Sigfox network. Only the days having at least 110 GPS data were kept for 

the analysis. Consequently only eight sensors out of the nine were kept for the analysis. An algorithm 

has been developed to automatically detect the barn, based on the hypothesis that the density of 

geotracking positions would be higher when cows are in the barn than on pasture. This clustering 

method was developed with the dbscan package (Hahsler et al., 2019) available in R. The geotracking 

positions which were detected outside the barn by this algorithm were kept to calculate the time spent 

outside (T-Out) as the number of GPS positions outside the barn multiplied by the mean delay between 

two successive GPS records. The quality of T-Out estimation was characterized with the estimation of 

the root mean squared error (RMSE), the coefficient of correlation of concordance, and the 

decomposition of RMSE within mean bias, slope bias and random bias. The ability of the algorithm to 

correctly identify days with at least 6 h of T-Out, which is the minimum required in the French 
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specification, was evaluated with the estimation of percentage of good predictions, by considering that 

the positivity is the detection of days with more than 6 h T-Out. We estimated T-Out for all combinations 

of sensors from 2 to 8 sensors. An ANOVA was performed to test whether the number of GPS affected 

the performance of the algorithm. 

Results and discussion 

The average T-Out estimated with the algorithm was 647 min (+/- 188 min), which was 35 minutes less 

than the T-Outref. The coefficient of correlation of concordance was 0.96, which shows that the 

estimation strongly reflects T-Outref. The estimation of T-Out was achieved with a RMSE of 55 min 

(coefficient of variation of 8.5%; Figure 1A). The main application of this method will be to count the 

number of days with at least 6 h outside the barn. The developed algorithm was able to assign 100% of 

the monitored days for all cows in the right class, i.e. as below or at least equal to 6 h T-Out. 

   

Figure 1. A: Relationship between the estimated and the reference time spent outdoors (T-Out; N = 171 

observations). The black dashed line is the first bisector, the solid line is the linear regression (Y = -

28.1 + 1.10 X, R² = 0.97). The dotted grey lines represent the 6 h threshold.  B: Tracking of the 8 cows 

as recorded by their GPS sensors for the period when cows were locked in the barn. The white polygon 

delimits the barn. 

The prediction error decomposition highlighted that the prediction error could easily be improved by 

reducing the underestimation observed when estimating T-Out with the algorithm. Indeed, 40% of RMSE 

was explained by a mean bias, which is explained by an underestimation of T-Out, especially for high 

T-Out (Figure 1A). The other 60% was split between random bias (49%), and slope bias (11%). Having 

an underestimation of T-Out, especially when cows spend less time in the barn, can be explained by an 

insufficient number of in-barn points for the algorithm to define the barn with accuracy. In addition, the 

accuracy of GPS sensors is lower in the barn. Indeed, several GPS positions were recorded outside the 

barn, while the cows were in the barn. A gap was seen between a cow’s true position and the position 

recorded by GPS sensors when all cows were kept indoors (Figure 1B). The combination of both a lower 

accuracy of GPS when cows are in the barn and the shortness of the period within the barn contributes 

to a barn definition which is more impacted by GPS inaccuracy than the definition of the outdoor area. 

This may explain why there are cows grazing close to the barn but which were considered to be within 

the barn, and contributed to the underestimation of the T-Out. A solution could be to analyse the previous 

and subsequent GPS positions, as suggested by Bhattacharya et al. (2015). 

The number of cows monitored with the GPS had no significant effect on the quality of barn detection 

because neither the surface nor the barycenter changed significantly with the number of sensors 

(p > 0.05). The average T-Out estimated over the whole grazing period did not significantly differ with 

the number of sensors (p > 0.05). However, we observed a relative increase of the frequency of having 

the minimum T-Out below the 6 h threshold when using fewer sensors. In fact, five cows had at least 2 

A B 
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days with a T-Outref below 6 h. If the specification requires that all days have a T-Ouest of at least 6h, 

we suggest either to increase the number of monitored cows or to choose cows that are representative 

of the whole herd. In a common system where all cows have either access to pasture or to the barn, but 

not both at the same time, one sensor will be enough. However, the need for sensors may be limited for 

the 'Pasture Milk' certification in those systems as T-Out estimation is obvious for farmers. 

Conclusions 

A GPS embedded sensor combined with a clustering algorithm can be used to identify automatically the 

number of days dairy cows spend on pasture. Further steps are required prior to a commercial use, 

such as a validation on different systems and with more cows to have a more precise estimation of the 

absolute time spend outside by cows, as well as the estimation of the associated costs. Complementary 

applications such as grazing management and calendar, grassland use, heat and calving detection need 

to be developed to make the tool useful for farmers and be sure it will be used by farmers and not just 

to check the compliance with the 'Pasture Milk' specification. 
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Use of drones with infrared cameras to search for fawns before mowing 

– experiences from practice 
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Abstract 

First cuts of grassland and fodder crops coincide with the birth time of roe deer fawns. While older fawns 

on plots can escape from the mower, younger fawns lack the escape behaviour and can be injured or 

killed. The aim of the study was to collect the information such as detection success and labour input 

for detection of fawns before mowing by using drones with infrared cameras. The data were recorded 

by nine drone users during the season 2020. The searched area varied between 0.3 and 38 ha per plot 

with overall 581.4 ha on 161 plots. Fawns were found or seen on 48 plots. In total, 88 fawns were found 

(of which 40 could be caught) by search, 8 were seen and escaped during mowing, and 10 were found 

injured or killed during or after mowing. Field time (time from arrival until departure from the plot) needed 

per ha and team (2-5 people) to search the plots varied between 0.05 and 1.49 h (0.36±0.25 h; 

mean±SD). Most of the fawns could be found using the drones with infrared cameras. However, this did 

not enable all fawns to be rescued on mown plots. 

Keywords: drone with infrared camera, detection, roe deer fawn, mowing 

Introduction 

Most roe deer fawns in Central Europe are born in May and June (Rieck, 1955; Müri, 1999). 

Unfortunately, grassland and fodder crop fields are a popular bedding habitat for roe deer neonates 

(Jarnemo, 2002), and May-June is the time when first cuts are taken from grassland and fodder crops. 

Roe deer are long-term hiders, as the fawns hide motionless, odourless, with a reduced metabolic rate 

and secluded from their mothers most of the time during their first 6-8 weeks of life (Panzacchi et al., 

2009). It is only from the second to third week of life that the flight instinct replaces the hide instinct 

(Rieck, 1955). Therefore, they do not escape from mowers in the first weeks of life. Older fawns and 

even adult animals can also be injured or killed during mowing with high velocity (up to 16 km/h) and/or 

larger working width of mowers (up to 9 m or even larger). There are several methods to prevent fawns 

from being injured or killed during mowing. One possible method is to use drones with infrared cameras. 

However, less information is available about the success of the search and labour input by use of this 

method. The aim of this study was to collect information about the usage of drones with infrared cameras 

to save roe deer fawns before mowing. 

Materials and methods 

Data recording was performed using an entry form in the season 2020. Data regarding technical 

equipment (type of drone and camera), flight settings, conditions during detection (e.g. temperature, 

type of vegetation, area of the plot, and crop height), arrival time at the plot, time of first and last flight, 

departure time from the plot, information about found or seen fawns, information about the use of 

additional methods applied to search the animals or scare them from plots before moving etc. should 

be recorded. One entry form was used for each plot. First data were recorded on 4 May 2020 and the 

latest on 3 July 2020. 

Results and discussion 

Exact fawn numbers injured or killed every year during grassland and fodder crop cuts are unknown. In 

studies of Kittler (1979) and Kaluzinski (1982), the losses of roe deer fawns by mechanized agricultural 

operations were estimated at around 14.5% or even 26%, respectively. At present, there is increasing 

use of drones with infrared cameras to detect animals on the plots before mowing. In the present study, 

we received 161 evaluable entry forms from nine drone users, i.e. data from 161 plots searched with an 

area between 0.3 and 38.0 ha (3.61±5.41 ha (mean±SD)) and a total of 581.4 ha. Fawns were found or 

seen on 48 plots, and 88 fawns were thereby found (40 of which could be caught and placed i.e. under 
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or in a basket) by search with drone and infrared camera, 8 fawns were seen and escaped during 

mowing, and 10 fawns were found injured or killed during or after mowing. The exact reasons for 

presence of fawns on certain plot during mowing (i.e. after the search with drone) are unclear. A failed 

detection caused by technical problems and characteristics of grassland was noted as possible reason. 

Also, an incorrect decision of the drone pilot cannot be excluded. Furthermore, the impossibility of 

catching some fawns after detection seems to be one reason. Experience shows that fawns which are 

not caught try to come back onto the plot in the time gap between the search and start of mowing. 

The first fawns were found on 8 May 2020 and the last on 24 June 2020. In the study of Müri (1999), 

the middle day of fawn birth was 27 May. In our study, most of the fawns were found or seen in the 

period between 22 May and 08 June 2020 (Figure 1). As the season progressed, the number of found 

fawns that could be caught decreased. Whereas no fawns were found or seen during mowing in the first 

two periods, 8 fawns were seen escaping from the mower in the last period. In contrast, 5 fawns in each 

period were injured or killed during the first two periods, but none was injured or killed in the last period. 
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Figure 1. Number of found or seen fawns before, during or after mowing according to period. 

Field time (time from arrival until departure from the plot; calculated from daily values per team, i.e. sum 

of all field times per team and day divided by sum of all plot areas per team and day) needed per ha 

and team (2-5 people) to search the plot varied between 0.05 and 1.49 h (0.36±0.25 h; mean±SD). 

Interestingly, there was no significant difference (P>0.05; Mann-Whitney rank sum test) in field time 

needed per ha and team (calculated from values per plot) between plots without and with finds (Table 

2). However, the field time decreased with increasing plot area (Spearman correlation coefficient was -

0.66 (P<0.001)). Moreover, the plot area without fawns (Table 1) was significantly lower (P<0.001; 

Mann-Whitney rank sum test) than plot area with fawns (1.6 and 3.0 ha per plot, respectively). 

Table 1. Area of plots according to presence of fawns (i.e. found or seen fawns before, during or after 

mowing) on plot. a,b Values with different letters differ at the 5% level. 

 Plots 

Parameter Without fawns With fawns 

Number of plots 113 48 

Overall area of all plots (ha) 324.7 256.9 

Average area of plots (ha; mean±SD (median))  2.87±4.30 (1.60)a 5.35±7.14 (3.00)b 

Minimum - maximum area of all plots searched (ha)  0.3-38.0 0.3-30.0 
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Table 2. Field time per team needed to search the plot with drones with infrared cameras according to 

plots without or with fawn finds on plot during the search. a,b Values with different letters differ at the 5% 

level. 

 Plots 

Parameter Without finds With finds 

Number of plots 115 46 

Overall area of all plots (ha) 337.5 243.9 

Average area of plots (ha; mean±SD (median))  2.93±4.31 (1.60)a 5.30±7.26 (3.00)b 

Minimum - maximum area of all plots searched (ha)  0.3-38.0 0.3-30.0 

Field time for search per ha and team (h; mean±SD (median)) 0.38±0.31 (0.31)a 0.34±0.21 (0.33)b 

Conclusions 

Most of the fawns could be detected on the searched plots. However, even if the fawns were found, not 

all of them could be caught, and these were still in danger during mowing. Finally, 10 fawns were found 

injured or killed during or after mowing. Moreover, the time needed to search the plots using drones with 

infrared cameras should not be underestimated. 
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Abstract 

Commercially available smart farming technologies, e.g. ear tags that collect behavioural patterns, claim 

to provide economic benefits to livestock production and improvements in animal welfare. As these 

technologies are mainly applied to confined systems, this study aimed to validate them by visual 

observations to investigate their suitability for grazed grassland. A total of 24 Simmental heifers were 

randomly assigned to six experimental groups. These groups were then assigned into two fencing-

system treatments (virtual fencing vs. physical fencing) which were compared in three successive 

periods of 12 days each. An ear sensor (CowManager™, Harmelen, the Netherlands) providing 

information on cattle activity was attached to the animals before the start of the experiment. For each 

period, two groups of four animals were grazed in two 1000 m2 paddocks and grazing behaviour was 

observed visually for 4 h daily. Data obtained from ear sensors on grazing activity were predicted from 

the data based on visual observations in a generalized least square model. The relationship between 

observation data and sensor data was significant (P<0.0012) with a root mean square error = 39.72 and 

R2
adj = 0.09. The ear sensor proved unreliable, and uncertainty in the prediction calls for further 

evaluation in the model.  

Keywords: smart farming technology, ear sensor, sustainable livestock production, grazing cattle, 

pasture-based livestock production 

Introduction 

Commercially available smart farming technologies claim to provide economic benefits to livestock 

production and to improve animal welfare. Previous studies have found precision dairy technologies to 

accurately predict and monitor dairy cow behaviour in confined dairy systems (Bikker et al., 2014; 

Borchers et al., 2016). While these technologies have, so far, mainly been tested and applied in 

confinement systems, circumstances may differ when animals have access to pasture. In grazing 

systems, changes in environmental and management conditions might cause a change in animal 

foraging behaviour. In a study investigating the suitability of ear sensor technology with grazing dairy 

cows, Pereira et al. (2018) found that sensors accurately monitored grazing and rumination behaviour 

but inaccurately depicted active behaviour. With the development of innovative animal control 

technologies such as virtual fencing, behavioural patterns may change, thus affecting the reliability of 

the ear sensor. So far, no study has investigated the effects of fencing systems on the reliability of 

predictions from ear sensors. Therefore, this study aimed to validate ear sensor technology with visual 

observations and to investigate their suitability for grazing systems with growing heifers on continuous 

pastures comparing two different fencing systems. 

Materials and methods 

The study was approved by the animal welfare service of LAVES (Lower Saxony State Office for 

Consumer Protection and Food Safety - reference number: 33.19-42502-04-20 / 3388). The trial was 

conducted in August and September 2020 on the experimental farm of the University of Göttingen in 

Relliehausen, Germany with 24 heifers (Simmental, 462 ± 17.3 days age and 396 ± 32.7 kg live weight 

average) that were randomly assigned to six treatment groups. These groups were then assigned into 

two fencing system treatments (virtual vs. physical fencing) which were compared in three successive 

periods of 12 days each. 

Visual observations were done to assess the effect of two fencing treatments on animal behaviour 

(Hamidi et al., 2021, in these Proceedings). Heifers were grazed five hours daily on adjoining paddocks 
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of 1000 m2 size. The virtual fence groups were equipped with active, the physical-fence group with 

inactive Nofence collars (® Nofence, AS, Batnfjordsøra Norway). For training purposes, an exclusion 

zone was established within the paddocks with a virtual or physical fence line. Every group was 

observed continuously over four hours daily by the same persons resulting in a total entry of data 

observation endpoints of >69,000. Further, the animals were equipped with CowManager™ ear sensors 

(CowManager, Agis, Harmelen, the Netherlands) to monitor grazing activity. Data of visual observations 

were compared to recorded CowManager™ data from the same time frames. Using a generalized least 

squares model in R software, the total daily grazing time per animal in minutes day-1 recorded by the 

sensors (DGTs) was regressed on the fixed effects of the grazing time recorded by visual observation 

(DGTo) and the fencing treatment effect, as well as their interaction. 

Results and discussion 

Average DGTo was 181.7 ± 135.1 minutes, whereas average DGTs was 221.0 ± 81.8 minutes. The 

relationship between DGTs and DGTo was significant (P=0.0012) (Figure 1). 

 

Figure 1. Relationship of daily grazing time (DGT) in minutes per observation day (4 h) recorded by 

CowManager™ sensors and visual observation of grazing heifers. The line shows the x y equal line. 

Fencing treatment and the interaction between DGTo and treatment were not significant. Consequently, 

the fencing system did not affect the grazing behaviour, which is in line with Hamidi et al. (2021, in these 

Proceedings). However, the sensor data seem to overestimate the grazing time when compared to the 

observations (Figure 1) and the R2 was fairly low (R2=0.09). This deviation may be explained by the 

recording interval, as the internal sensor software aggregates data in minute intervals for each hour. 

Hence, the accuracy of the sensor will likely increase with a longer duration of one behavioural pattern. 

Visual observations were recorded in real-time, allowing intervals of < 1 minute. Grazing often occurs in 

motion, as the animal moves over the pasture (Hodgson, 1990), whereas in confinement systems 

animals typically eat in one spot, without moving. Thus, walking while eating may cause a discrepancy 

in the sensor records. Similarly, Pereira et al. (2018) found that sensors struggled to record active 

behaviour accurately. Further, visual observations included a more detailed set of behaviours (n=16) 

compared to the sensors (n=5) in smaller time units (<1 minute). Short disruptions of grazing, for social 

behaviour or vocal expression, would not be recorded by the sensor, potentially causing disparities in 

grazing time. As the heifers spent most of the observed time frame grazing, increasing the observation 

period and, thereby, grazing time could lead to the recording of more versatile behaviour, possibly 

increasing the sensor correctness. As other behaviour, such as lying or ruminating, is performed 

similarly in confined systems, sensor recordings can be expected to deviate less from visual 

observations than in the records of grazing behaviour. Thus, the investigation of other recorded activities 

from both sensors and observations will allow further in-depth evaluation of the sensor used. 
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Additionally, the poor correlation between sensor and observation data suggests the need for further 

analysis with optimized models. 

Conclusions 

The study shows that virtual fencing technologies do not affect grazing behaviour of heifers. However, 

based on our study with 24 growing heifers, CowManager™ ear sensors are not suitable for the 

assessment of cattle grazing time, as short grazing periods might not be accurately depicted, and 

walking while grazing may be wrongly attributed in software outputs. Therefore, analysis with optimized 

models, of longer time periods and other recorded activities are necessary to further evaluate the sensor 

validity in recording animal behaviour in grazed grassland. Thus, it can be concluded that, so far, 

CowManager™ sensors insufficiently represent animal grazing behaviour and have limited suitability for 

recording animal behaviour in grazed grassland. 
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Abstract 

Remote sensing data in combination with image segmentation approaches have been shown to be 

valuable for identifying homogeneous areas such as agricultural land parcels. However, these 

approaches have not been widely explored for their usefulness in identifying homogeneous areas of 

grassland management under different management intensity levels. We present an unsupervised 

Bayesian segmentation approach for the combined analysis of Sentinel-1 and Sentinel-2 monthly 

composite data aiming to identify homogeneously managed grassland parcels, which was tested on an 

area of about 50 ha. We applied a segmentation refinement procedure with Sentinel-1 data in the first 

iteration and used Sentinel-2 data in the second iteration to delineate smaller areas within the identified 

segments. The approach led to promising results in intensively managed grassland areas with many 

mowing events. The results were also plausible under agriculturally extensive use. However, in semi-

natural managed areas and in regions with varying environmental influences the identification of 

segments was prone to errors. The results show the potential of image segmentation in a grassland 

context, especially when management data are not available but needed. Our approach, although tested 

on a small scale, is applicable to larger regions. 

Keywords: remote sensing, grassland management, time series, Sentinel-1, Sentinel-2 

Introduction 

Mapping and monitoring of grassland areas are prerequisites, e.g., for informed management decisions, 

biodiversity assessments or agricultural statistics (Reinermann et al., 2020). Spatially explicit information 

is lacking due to the extent of grasslands and the complexity of grassland management. Existing data 

like the Land Parcel Identification System do not reflect the complexity of grassland management, as 

differently managed parcels are often combined in one polygon. Remote sensing data in combination 

with image segmentation approaches have been shown to be valuable for identifying homogeneously 

managed areas such as agricultural parcels but have not been widely explored for their usefulness in 

identifying areas of grassland management. Since grassland management and use intensity are 

observable over time, we combined Sentinel time series data for our research. 

Data and methods 

The study was carried out at the Paulinenaue research fields in Brandenburg, Germany (52°68ʹN, 

12°72ʹE; 28.5 – 29.5 m a.s.l), for which detailed reference data were available. The chosen study area 

has a large variety of differently managed parcels with combinations of mowing and grazing in a 

comparably small area. The area is characterized by three management types: intensive (south eastern 

part), extensive (northern part) and semi natural (south western, south central). Parcels under intensive 

use (13, 16, 152, 171) are rather homogeneous in terms of management, fertilization, soil and water 

conditions and species composition after re-seeding the grass sward. Extensively used parcels (4-7) 

are also characterized by similar conditions but differ in their date and type of use (grazing or mowing 

events). The moist parcels under semi natural use (211-242) are characterized by varying soil and water 

conditions, are not fertilized and have an erratic grass species composition; number and date of use 

depended on natural growth (Figure 1). Parcels 91-102 are under semi-natural use as well and only 

mown. 

We used an unsupervised Bayesian segmentation approach for the combined analysis of Sentinel-1 

radar data (S-1) and Sentinel-2 optical data monthly composites (S-2) of enhanced vegetation indices 
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(EVI) both in 10m spatial resolution. The use of monthly composites enabled us to overcome limitations 

of both data domains (i.e., clouds in optical data, speckle in SAR) that were found to be problematic for 

the segmentation of large areas. 

 

Figure 1. Segmentation results and reference areas. 

The BaySeg algorithm (Wang et al., 2019) is a Bayesian segmentation algorithm that considers 

proximity in feature space as well as in the spatial context. The dimension of space is modelled as a 

Markov-Random field (MRF), which is controlled by the beta coefficient, whereas smaller values 

represent a weak and higher values a high spatial constraint. Additionally, the maximum number of 

classes needs to be set, and neighbourhood definitions can be changed.  

We adapted the algorithm to our problem and used the algorithm in three iterations, to assure that all 

areas of homogeneous management will be identified. In the first iteration the S-1 data were used to 

segment large areas into smaller patches in which it is much less likely to have data gaps in the optical 

data, which were used to refine the segments in the second iteration. Finally, all segments above a pre-

defined spatial threshold of 1 ha were refined in a third iteration using optical time series. Monthly 

composites were acquired for the months March to November 2018. While the S-2 EVI monthly 

composites were obtained using FORCE (Frantz, 2019), the S-1 composites were acquired from the 

code-de (https://code-de.org/) platform. To focus the analysis on grassland areas only, a pixel-based 

grassland mask was applied. We validated the results based on the reference data and calculated the 

intersection over union metric between the reference parcel and the corresponding segment. It is defined 

between 0 (no spatial similarity) and 1 (complete spatial match). We calculated the overall segmentation 

quality (OSQ), which is a spatially weighed average over all segments (Tetteh et al., 2020). 

Results and discussion 

The objective of our research was to identify homogeneously managed grassland areas. The proposed 

approach led to promising results in diversely managed grassland areas with a moderate OSQ of 0.48. 

The three neighbouring intensively used grazing land parcels in the south eastern part (16, 13, 152 in 

Figure 1) were correctly identified as one common segment due to their similar use intensity and 

environmental conditions, while the fourth meadow parcel was separated (171). The various extensively 

used parcels of the study area (Figure 1, green frame) were successfully identified by their management 

differences as individual parcels (4-7 in Figure 1). However, in semi-natural managed areas and in 

regions with varying soil and water conditions and mixed species occurrence (211-242), the identification 

of segments was prone to errors. This can be observed in the south western and particularly in the 

eastern parts of the study area. 
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In the south-western part sometimes two neighbouring parcels were falsely merged to one segment 

(e.g., 211 and 221, 212 and 222), while parcels 241 and 242 were merged correctly (also 91-102). As 

some parcels were managed similarly in 2018, our algorithm merged those. The algorithm also merged 

parcels with similar environmental conditions despite the different management. This can happen when 

the management signal is not pronounced enough. In this case adding more features (e.g. different 

indices, other spectral bands) might improve the segmentation result but increases computational 

demands, which can be problematic for large areas assessments.  

Conclusions 

The results show the potential of image segmentation in a grassland context, and this allows the 

identification of homogeneously managed areas. The segmentation is fully unsupervised and thus no 

additional training data are necessary. The approach works well for intensively managed grassland 

areas with clear management signals. Even though small-scale differences in environmental conditions 

may influence the results, the identified segments can be beneficial for grassland use-intensity 

estimations, as they enable the investigator to overcome data gaps or noise in pixel-based time series 

analyses (e.g., speckle effects in S-1 data). 
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Abstract 

Satellite-supported information services support farmers in a variety of ways to make management 

decisions. However, most satellite-based information services focus on arable land and are not yet 

available for grassland. An important aspect in the development of such information services is the 

correct derivation of green leaf area and aboveground dry biomass from satellite data. This derivation 

forms the technical basis for all subsequent analyses and management recommendations calculated by 

satellite-based information services. In a previous study, green leaf area and dry biomass were already 

successfully derived for a grassland site using two alternative modelling approaches – an empirical 

model based on random forest decision trees and the radiative transfer model SLC. For operational use 

in information services, transferability of the methods used in different areas is necessary. In this study 

we calculated DBM with both models and compared the results to DBM data provided by a combine 

harvester. The spatial heterogeneity within the fields was well captured by both models. Both models 

calculated significantly lower DBM than was measured with the combine harvester. 

Keywords: dry biomass, yield estimation, Sentinel-2, radiative transfer model, random forest 

Introduction 

Satellite-based information service support farmers with a wide range of information, such as site-

specific fertilization, water demands and yield predictions. While satellite-based information services are 

available for arable crops, information on grassland is still scarce. Knowledge about the expected 

amount of dry biomass yield from meadows is very inaccurate or often lacking. This provides a challenge 

for farmers, as they can only assume the fertilization demand of their fields and lack information if they 

will have sufficient biomass growth on their grassland to cover their fodder needs for the following winter. 

Satellite-based information services could provide relevant information for farmers if estimates of 

grassland yields could be calculated. In a previous study we developed two approaches and compared 

their ability to estimate dry biomass (DBM) from a Sentinel-2 (S-2) scene for a test site in northern 

Germany (Schwieder et al., 2020). In the first approach an empirical model (EMP), based on a random 

forest, was trained with field data from the Ribbeck (Germany) test site and validated against an 

independent dataset before it was applied to the S-2 scene. The second approach includes deriving the 

green leaf area (GLA) with the radiative transfer model Soil-Leaf-Canopy (SLC) and then calculating 

DBM from the GLA using the crop-specific leaf mass per area (lma). In the previous study, both models 

were able to predict DBM with high accuracy. Robust provision of satellite-based information services 

requires that the models developed can be transferred to other sites, which was tested in this study. 

Materials and methods 

To test the transferability of the developed approaches, both models were applied on three other 

meadows on a different test site. The new test site is located near Paplitz (52°15'40"N, 12°14'2"E), about 

100 km south of Ribbeck, where the models were initially developed and validated (Schwieder et al., 

2020). All three meadows were cut on 30 June 2019. For all three meadows it was the second cut of 

the year 2019. Harvest data from a John Deere forage fodder harvester were available. These data 

were corrected for moisture to derive dry biomass values and corrected for outliers in the data range 

using histogram analysis, as described in Bach et al., 2016. No calibration with weighing data could be 

performed since no weighing data were available. The reference data show very high values of DBM for 

a second cut. A cloud-free S-2 scene was acquired on 26 June 2019, four days before the meadows 
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were cut. The S-2 scene was pre-processed using the Vista imaging analysis chain (VIAs) (Niggemann 

et al., 2014). Pre-processing included detection of clouds and cloud shadows as well as geometric and 

atmospheric corrections. The DBM was then derived from the satellite scene with both models (EMP 

and SLC), without further site-specific model adjustments. The DBM predicted by both models were 

compared to the available reference data. The analysis included field-average DBM-values and pixel-

wise comparisons as well as calculation of the relative Root Mean Square Error (rRMSE). 

Results and discussion 

The comparison of the modelled DBM to the reference data showed similar trends in both models for 

the three fields, with a good fit in the largest field and moderate to low fits in the two smaller fields (Figure 

1, where each dot represents a 10 m x 10 m pixel). For all fields the results of both models revealed the 

same spatial patterns as in the reference data (Figure 2). 

 

Figure 1. Pixel-wise comparison of model results to the harvest data provided by the forage harvester. 

 

 

Figure 2. Maps of DBM measured by the forage harvester, calculated DBM results of both models and 
a difference map of the modelling results. 

With regard to the average DBM per field, it was found that both models correctly reproduced the 

differences between the fields, but generally underestimated DBM (Table 1). DBM values modelled with 

EMP were generally higher than the results modelled by SLC. 

Table 5. Overview of results on field average level. 

While both models were able to account for the spatial heterogeneity within the test fields, and they 

correctly represented the trends in DBM, the absolute values and subsequently the average DBM per 

field was underestimated by both modelling approaches. This partly contradicts the results of the study 

by Schwieder et al. (2020), in which the total amount of DBM was well estimated by both models when 

Field Forage Harvester Data SLC EMP 

No. DBM [Mg ha-1] DBM [Mg ha-1] rRMSE [%] DBM [Mg ha-1] rRMSE [%] 

4138 3.22 1.28 64.06 2.22 39.46 

4161 3.03 1.12 67.12 2.00 41.18 

4163 2.32 0.63 74.16 1.74 30.50 
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compared to the reference data. While the management situation in both studies is comparable, 

differences in the modelling results might be caused by other influencing factors, such as different soil 

types, water availability or species composition. 

However, a potential bias in the reference data used cannot be ruled out, as no weighing data were 

available to validate the combine harvester data and the reported average harvest amount of 3 Mg ha-1 

is at the upper limit for a grassland site managed with three to four cuts per year (Diepolder et al. 2016). 

The correct derivation of DBM with SLC is highly dependent on the assumed lma of the canopy, as the 

lma is highly variable and varies between different species as well as between years and cutting events 

(Poorter et al., 2009). Future research should therefore focus on the effects of species composition on 

the S-2 reflection signal and the variability of lma on different meadow types. Multi-temporal data could 

be used to assess lma changes throughout the growing period as a reaction to cutting events. 

Conclusions 

The model transfer to an independent region showed that spatial patterns of DBM within and between 

fields can be estimated from multi-spectral S-2 data with both modelling approaches. However, the 

estimated absolute values did not match the reference data. Site-specific calibration (e.g., with harvest 

data) is thus still necessary to correctly determine leaf mass per area, and subsequently the DBM yields. 
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Abstract 

In order to manage grassland areas properly, and mitigate or avoid stress, precise information about 

grass growth conditions is needed. The main objective of the GrasSAT project is a fully operational 

system in the form of desktop and mobile applications, to provide a complementary tool for managing 

grassland production, mainly for medium and large farms in Poland and Norway. Combining the 

effectiveness of the application with the support of external advisers is the key to improve grass 

production management. The methodology for monitoring grass growth conditions and yield forecast 

will be based on synergistic use of remotely sensed data, process-based grassland models and 

reference in-situ data, indispensable for elaborating reliable models characterizing plant development. 

Using remote sensing to estimate the expected yield of a grassland site can help farmers to prepare for 

importing forage and to detect areas with high water stress. In addition, process-based models can help 

estimate the impact of a drought or freezing event on the yield. The project assumes the use of ground 

data for the calibration of satellite data. 

Keywords: climate change, grassland production, remote sensing 

Introduction 

Climate change is affecting grassland productivity across Europe (Kipling et al., 2016), e.g. in Poland 

as well as in North Norway. The extremes of weather in winter, i.e. often lack of snow cover together 

with low temperatures and frequent events of increased air temperatures early in spring, cause shifts in 

phenology and disturbance of the water balance in grassland areas. This may influence the grass yield. 

Also, lack of precipitation and increased temperatures later in spring and summer may cause water 

deficit or drought in some of the areas.  

The project GrasSAT entitled “Tools for information to farmers on grasslands yields under stressed 

conditions to support management practices” will be conducted for a period of 36 months (Jun 2020-

Jun 2023). The main objective of the GrasSAT project is a fully operational system in the form of desktop 

and mobile applications, to provide a complementary tool for managing grassland production, mainly for 

medium and large farms in Poland and Norway. The project-specific objectives were defined as follows: 

1) delivery of a service in the form of desktop and mobile applications to optimize farm management like 

reducing the need for supplementary forage, and 2) development of a method for assessing grassland 

damage caused by drought or winterkill on the basis of multi-source satellite data and their synergy with 

meteorological data. Novel approaches will be based generally on innovative use of satellite data in the 

grassland management to increase yield and to monitor grassland status. 

Materials and methods 

The overall scope of the work and the relations between the major research activities within the project 

are presented in Figure 1. 

The reference data will comprise two types of information: in-situ measured soil-vegetation parameters 

and meteorological data. In Poland we will collect in-situ data on selected productive grasslands located 

mainly in dairy farms in two regions: north-eastern and central-western Poland. We will also select 

irrigated productive grasslands, which will allow us to compare the effect of artificial water supply on 

soil-vegetation parameters versus non-irrigated areas. In Norway, with winterkill as the main focus, test 

areas will be selected in the northern counties: Troms, Finnmark and Nordland. The in-situ data include 



 
Grassland Science in Europe, Vol. 26 – Sensing – New Insights into Grassland Science and Practice 215 

 

observations of the conditions of the fields, information on management, as well as measurements of 

grass yield, species composition and nutritive value. Meteorological data covering test areas, necessary 

for studying relationships between weather conditions and satellite-based indices, will be the second 

type of data. 

 

Figure 1. The major project activities and the relations between them. 

For classification of grassland types a High Resolution Layer (HRL) provided by the Copernicus service 

will be applied, in order to delineate grassland areas for the selected test sites. Grassland areas will be 

extracted from Sentinel-2 images using masks prepared on the basis of the HRL layer. At the next stage 

of the work, various approaches to classification will be tested in order to determine those delivering the 

highest classification accuracy. 

The relationship between the in-situ measured parameters (LAI, FAPAR, and biomass) and the indices 

derived from the satellite data (NDVI, EVI, NDWI) will be determined and subsequently used to predict 

vegetation parameters from Sentinel-2 and Landsat 8 data on a weekly basis during the growing season. 

This will be used to create maps of vegetation parameters (e.g. LAI) over the study areas. In addition, a 

model will be developed based on time series of vegetation indices during the growing season to predict 

yield at harvesting time. 

The satellite-derived indices will be analysed with the meteorological data. To monitor and classify the 

drought areas, data from the Sentinel-1 satellite will additionally be applied to determine soil moisture 

variation. The already existing soil-moisture model developed at IGiK will be calibrated using a set of in-

situ measurements (Dąbrowska-Zielińska et al., 2018). Determination of the winterkill conditions for 

grasslands will be based on Sentinel-2 and Sentinel-1 data. 

In order to predict grassland yield and overwintering we will calibrate the Basic Grassland (BASGRA) 

model (Höglind et al., 2020) against data obtained in GrasSAT. Model parameters will be calibrated 

against data derived from satellite information and/or in-situ registrations. Validation of the prediction 

accuracy of drought stress, winter survival/kill rate and biomass yield from the calibrated model versions 

will be conducted against independent in-situ registrations, or a combination of in-situ registrations and 

independently derived satellite data. The BASGRA model will then be applied to simulate and predict 

grassland performance such as winter survival for the current season. 

Finally, we will create a website dedicated to presentation of project results, i.e. information on grass 

growth conditions, indications of areas affected with drought, winterkill and impacted by different 
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management, as well as the prognosis of grass yields. In parallel, the mobile application will be 

developed to deliver the same products to individual farmers. 

Discussion 

Management practices well adapted to more variable and stressful environments are needed to maintain 

the agricultural productivity of grasslands in Poland and Norway in the future. The adaptation 

approaches to climate changes are grass varieties resistant to drought in central Poland (Kopecký et 

al., 2010) and to winterkill in northern Norway (Thorsen and Höglind, 2010), new strategies of grassland 

fertilization (Golińska et al., 2016), soil moisture optimization by irrigation and/or drainage, use of 

variable cutting dates, and flexible grazing plans. It is therefore necessary to build new and efficient 

decision support systems, which provide a complementary tool for managing grassland production. This 

can help in planning for agricultural practices and offset financial risks at large scales. 
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Abstract 

Yield monitoring during the growing season is of great importance for grassland farmers, but challenging 

so far. Grass yields are often estimated based on visual observations, especially in rural and small-

scaled areas with extensive dairy farms like the Black Forest region. The Rising Plate Meter 

Grasshopper® (RPM) is a decision support system based on sensor technology which calculates 

available dry matter (DM) based on the measured compressed sward height. The accuracy of the 

calculation algorithm for the Black Forest region needs to be evaluated before the system can be used 

reliably. About 100 RPM measurements and corresponding herbage samples were taken at four test 

sites in the Black Forest region during the 2020 growing season. The results of the calculated DM based 

on the RPM-measurements show a mean deviation of 13% in comparison to the reference DM of the 

herbage samples. The accuracy can be improved by adapting the algorithm for this region. 

Keywords: yield monitoring, extensive grasslands, decision support, sensor technology, rising plate 

meter 

Introduction 

Sensor technologies promise benefits for farmers, animals and the environment in all parts of agricultural 

production. In grassland production these technologies have the potential to overcome the current 

challenges for farmers (Shalloo et al., 2018). For example, herbage yield determination in small-scaled 

regions is a recent issue. The usual estimations based on visual observations are not sufficient for 

precision grassland treatment and exact feed planning. Rising Plate Meters, like the Grasshopper®, are 

promising and relative inexpensive tools to determine the yield during the growing season and have 

been evaluated under different conditions. The Grasshopper® measures compressed sward height 

(CSH) precisely by using an ultrasonic sensor (McSweeney et al., 2019). Based on a standardized 

algorithm the system calculates the dry matter yield from the mean CSH. For intensive grasslands in 

Ireland the yield calculation based on this algorithm leads to relatively good results (O’Brien et al., 2019). 

In contrast, its application in Switzerland and Denmark has provided unsatisfactory results (Hart et al., 

2019) and shows the need for system adaptation if used under conditions with non-intensive grasslands 

(Schori, 2020). Therefore, the objective of this study is the evaluation and adaptation of the 

Grasshopper® calculation algorithm for DM yield under the special conditions of grasslands in the Black 

Forest region of Germany. 

Materials and methods 

The study was conducted on four grassland test sites near to Titisee-Neustadt in the Black Forest region. 

The test sites are managed by four different organic farmers. Following the method described by Klapp 

and Stählin according to Voigtländer and Voss (1979) the sward composition was determined and three 

different sward types (grass-rich, balanced and rich in clover or herbs) were classified. On each test site 

three test parts were spread over the area to represent the entire test site. The CSH of a 1 m2 plot of 

every test part was measured by using the Grasshopper® once a week. The DM yield was calculated 

based on the standardized Grasshopper® algorithm considering a cutting height of 70 mm and a mean 

DM content of 21%. After the height measurement the plot was cut by hand at 70 mm and the cutting 

height was checked by using the Grasshopper®. Subsequently the fresh weight was determined, the 

samples were oven-dried at 60 °C for more than 48 hours and weighed in order to calculate DM yield 

and DM content as a reference value. During June and July 2020 a total of 99 data sets were captured. 

In order to compare the DM yield calculated by the Grasshopper® with the reference determined by the 

hand-cut samples, the values are plotted against each other (Figure 1). The accuracy of the system is 
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specified by the Root Mean Squared Error (RMSE) for the deviation of the calculated values from the 

reference values. In order to improve the calculation algorithm, the DM yield reference values are plotted 

as a function of the CSH and a regression analysis is conducted (Figure 2). The determined linear 

regression equation is subsequently used to adapt the Grasshopper® DM yield calculation. 

Results and discussion 

The deviation between the calculated and reference DM yield is shown in Figure 1. Correct calculated 

values would fit on the broken line through the origin. The RMSE reflects the mean distance between 

the data points and the line through the origin. The accuracy quantification of the Grasshopper® by 

using the RMSE leads to a figure of 367.43 kg ha-1. Thus, DM yield is calculated with a mean deviation 

of 13% related to the measurement range. 

 

Figure 1. Calculated DM yield versus reference DM yield. 

By plotting the reference DM yield over the CSH a strong correlation between these two values is shown 

(Figure 2). A regression analysis leads to a linear equation with a coefficient of determination of R2 = 

0.826. By using this linear equation as a basis for the Grasshopper® DM yield calculation from the CSH 

measurement, the accuracy of the calculated values can be enhanced. Thus, the RMSE value improves 

to 247.99 kg ha-1, respectively 9.5% related to the measurement range. 

 

Figure 2. Reference DM yield versus CSH with linear regression line and coefficient of determination. 

500 1500 2500 3500

-500

0

500

1500

2500

3500

kg ha
-1

kg ha
-1

 

c
a

lc
u

la
ti
o
n
 D

M
 y

ie
ld

reference DM yield

RMSE = 367.43 kg ha
-1

 

0 50 100 150 200
0

1000

2000

3000

4000

kg ha
-1

mm

 reference values

 linear regression

 

D
M

 y
ie

ld

CSH

y = -993.36+21.13·x

R2 = 0.826



 
Grassland Science in Europe, Vol. 26 – Sensing – New Insights into Grassland Science and Practice 219 

 

Conclusions 

The common Grasshopper® DM yield calculation based on the CSH measurement shows a deviation 

of 13% for extensive grasslands in the Black Forest region. The accuracy can be improved by the use 

of a region-specific conversion equation derived from regression analysis. Due to the Grasshopper® 

measurement technique and the heterogeneous grassland structure, a mean error of about 10% still 

remains. 
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Abstract 

Compressed sward height (CSH) measurements by means of rising plate meters are a standard 

management tool to assess the herbage on offer in pastures and can be used to quantify the herbage 

mass if a suitable calibration curve is available. In a field trial we explored the combined effect of CSH, 

vegetation type and progress of the growing season on herbage dry mass. Paired measurements of 

CSH by means of rising plate meter (Grasshopper®, True North Technologies, Shannon, IRL) and of 

herbage dry mass (harvest at 3 cm cutting height with electric scissors) were performed during the 

grazing season (end of April until mid-October) at three paddocks in the montane vegetation belt of the 

Alps (South Tyrol, NE Italy) managed by compartmented short sward grazing, and differing moderately 

in their botanical composition. General Linear Models accounting for the covariates CSH and progress 

of the growing season (expressed as day of the year), as well as for the vegetation type showed a 

significant effect of all factors. For an accurate prediction of herbage mass, a vegetation type-specific 

calibration, even with relatively similar vegetation types, seems to be useful. 

Keywords: rising plate meter, herbage mass, seasonality, botanical composition 

Introduction 

The measurement of the compressed sward height (CSH) by means of rising plate meters is a suitable 

tool for assessing the amount of herbage on offer on pastures, within a reasonable time and effort. 

Moreover, in heterogeneous swards, the large number of measurements allows a reliable picture of the 

variability in terms of herbage mass. However, the conversion of CSH measurements into herbage mass 

values requires calibration curves obtained for representative vegetation (Hart et al., 2020). Moreover, 

the slope coefficient of the relationship between CSH and herbage mass has been shown to have a 

seasonal character (Ferraro et al., 2012). In this paper the effect of both the botanical composition, with 

relatively small differences between intensively grazed swards, and of the advance of the growing 

season are investigated to produce a reliable estimate of the herbage mass based on CSH 

measurements. 

Materials and methods 

The study took place at the experimental farm Mair am Hof (South Tyrol, NE Italy) at altitudes ranging 

between 890 and 930 m a.s.l., on three gently sloped, SSW-facing paddocks (Table 1) of about 1.4 ha 

each, all managed by compartmented short sward grazing from the end of March until the begin of 

November. Until 2017, the whole area of the paddocks was a homogenously managed ley. KRW1 had 

been resown in Autumn 2017 with a seed mixture containing Lolium perenne, Poa pratensis and 

Trifolium repens (37%, 55.6% and 7.4% seed weight respectively), whereas KRW2 and KRW3 were 

periodically oversown with the same seed mixture. Starting at the end of April, paired measurements of 

CSH by means of a rising plate meter (Grasshopper®, True North Technologies, Shannon, IRL) were 

taken twice per week until the end of the intensive grazing season (begin of October) alternately in one 

of the three paddocks at five spots chosen to cover the whole height range occurring at that moment. 

At the same spot where the grass height was measured, a grass sample was immediately taken within 

a 50 cm x 50 cm metal frame by means of electric scissors at a cutting height of 3 cm. For sward heights 

≥ 8 cm, a round frame with the same size of the rising plate (40 cm diameter) was used instead. The 

reason for this round frame was that at high sward heights (usually corresponding with dung patches 

and refusals) the quadratic frame, having a larger area then the plate, usually included also vegetation 

with reduced herbage mass. The harvested herbage was then oven-dried at 60°C until weight constancy 

was achieved and weighed. The botanical composition in terms of yield proportion of all occurring 

species was assessed visually in each paddock within three randomly placed sampling areas of 100 m² 

during the spring growth phase (around mid-May) and again about one month later. Multiple regression 
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by means of General Linear Models was used to analyse the data. CSH and the progress of the growing 

season expressed as day of the year were treated as covariates, the paddock as a fixed effect. A 

stepwise forward model development was performed to fit the degree of the polynomials for CSH and 

progress of the growing season and to test for the interaction between the covariates. Only terms with 

P<0.05 were retained and the squared correlation between predicted and observed values and the Root 

Mean Squared Error (RMSE) were used to investigate the increase in prediction accuracy. Two third of 

the observations were used for training and one third for validation. The data was square root-

transformed prior to analysis to achieve normal distribution of residuals and homoscedasticity. Multiple 

comparisons were performed by Least Significant Difference. 

Results and discussion 

The botanical composition of the paddocks comprised a low number of species, ranging on average 

between 11 and 16 species (Table 1) and dominated by grasses with a yield proportion around 70%. 

However, there were some differences at species level. Trifolium repens was the only legume species 

and its proportion ranged between 7 and 24% (in KRW2 and KRW1 respectively, both on the late 

assessment date). A decreasing gradient for Poa pratensis from KRW1 to KRW3 and one for Poa trivialis 

in the opposite direction was apparent. Dactylis glomerata occurred with 9 to 16% in KRW2 and KRW3 

only. The yield proportion of Lolium perenne was relatively constant, being on average around 25%. 

Table 1. Location and botanical composition of the investigated paddocks. YPMS = percent yield 

proportion of species contributing up to 80% of the total yield. Dglo = Dactylis glomerata, Lper = Lolium 

perenne, Phpr = Phleum pratense, Popr = Poa pratensis, Ptri =Poa trivialis, Toff = Taraxacum officinale, 

Trep = Trifolium repens. 

Paddock 
code 

Coordinates Species 
number 

YPMS on 13.05.2020 YPMS on 10.06.2020 

KRW1 
46°48’9’’ N 

11°57’26’’ E 
11 

Popr (44%), Lper (26%), Trep 
(23%) 

Popr (34%), Lper (28%), Trep (24%) 

KRW2 
46°48’12’’ N 

11°57’29’’ E 
14 

Popr (29%), Lper (23%), Trep 
(13%), Dglo (11%), Ptri (8%) 

Popr (27%), Lper (25%), Dglo (16%), 
Phpr (11%), Trep (7%) 

KRW3 
46°48’9’’ N 

11°57’34’’ E 
16 

Ptri (28%), Trep (19%), Lper 
(17%), Dglo (9%), Toff (6%) 

Lper (28%), Trep (14%), Toff (13%), 
Ptri (12%), Dglo (10%), Phpr (5%) 

The best fitted statistical predictive model of the herbage mass (R²=0.796, RMSE=5.95) included two 

third-degree polynomials for both CSH and the progress of the growing season (Figure 1a). The 

progress of the growing season resulted initially, at a constant CSH, in increasing herbage mass values, 

followed by a decline and a second increase in the last part of the season (Figure 1b). 

 

Figure 1. a) Observed vs. predicted herbage mass for the best fitted model (square root-transformed 

data) and b) predicted herbage mass value (back-transformed on the original scale) depending on CSH 

and progress of the growing season. 
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This pattern was more pronounced at high values of CSH. This effect may be due to the change from 

vegetative to reproductive growth of the dominant grasses and thus to the increased load bearing 

capacity of the stem material, affecting the relationship between sward height and herbage mass. These 

results resemble somehow the findings of Itano et al. (2012), who incorporated a periodic function in the 

estimation of herbage mass by means of rising plate measurements. All terms of the polynomials had 

P<0.0001, whilst the P-value of the paddock effect was 0.030. However, the effect of the paddocks was 

relatively small, with KRW2 showing on average slightly higher herbage mass than KRW1 and KRW3 

(back-transformed values: 1350 kg vs. 1199 and 1164 kg ha-1 respectively). 

Conclusions 

Both the progress of the growing season and, to a lesser extent, the vegetation type of relatively similar 

swards allow improving the accuracy of statistical predictive models to estimate herbage mass 

depending on rising plate meter measurements. Even with relatively similar vegetation types, a 

vegetation type-specific calibration leads to an accuracy improvement when predicting herbage mass. 
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Abstract 

Grazing is a land use that has positive animal welfare benefits. A digital management tool called 

Weideinformationssystem ('Pasture Information System' in English), abbreviated as WIS, was 

developed to optimize grazing management. Farmers can integrate their list of individual animals as 

well as their list of fields currently managed for grazing into the WIS. The WIS can be used to document 

the number of grazing animals in the field each day to meet government funding programmes and to 

calculate the amount of nutrients excreted by grazing animals based on standardized values. Further 

development steps are planned to improve pasture management in order to generate benefits in terms 

of meeting the documentation obligations. It should be possible to integrate into the programme yield 

measurements and data on animal movement or grass intake, by various sensors, in order to evaluate 

the data and draw conclusions for optimizing grazing management. 

Keywords: pasture, documentation, digital management 

Introduction 

Within the framework of the Baden-Wuerttemberg (Germany) government-funding programme for agri-

environment, climate protection and animal welfare (FAKT), financial compensation is paid to farmers 

for grazing of grassland fields with dairy cows and cattle over one year old. The farmer must document 

when each animal was on each field to ensure a minimum grazing period per animal. Until now, 

documentation has been done on paper by filling in a table with data for each day from June to 

September. In order to comply with the provisions of the fertilizer regulation, the farmer must also 

document the number of grazing animals and calculate the nutrient inputs for N, P and K for each field. 

It should be possible to complete both types of documentation digitally in order to avoid having to enter 

data twice, and to enable further calculations to be performed with the data already entered. The digital 

application WIS was developed for these purposes. 

Materials and methods 

In order to ensure that the application is practice-oriented from the outset, a committee of experts, 

including practitioners, was set up and is responsible for the technical design and content of the 

application. 

The WIS was programmed for farmers to document the number of animals on a grazed field to meet the 

requirements of the government-funding programme and to calculate the amount of nutrients excreted 

by grazing animals, with average nutrient values for N, P and K based on standardized values under 

the fertilizer regulation. In addition to cattle, this is also possible for other animal species such as pigs, 

horses, sheep and goats. The system architecture of the application is shown in Figure 1. Company-

specific data from HI-Tier (Zentrale Datenbank HI-Tier, München) and FIONA (Flächeninformation und 

Online-Antrag, MLR Stuttgart) serve as a database and can be imported into the application. The 

datasets to be used are displayed in the application and can be modified and supplemented. With the 

imported data, the user can make grazing entries in the application for each animal or group of animals 

(herds) as well as for each day and field. The processed data can be issued by the application in the 

form of as a pasture diary and a nutrient accumulation report. 

Results and discussion 

A validation was performed by 60 farmers in Baden-Wuerttemberg to ensure functionality in practice. 

Feedback from farmers after the 2020 grazing period is used to improve the system. 
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It is very difficult to make a comparison with other systems, as there is no comparable system for 

southern Germany yet. Various field index providers such as ProFlura (ASSW GmbH CoKG, Tettnang) 

or 365FarmNet (365FarmNet GmbH, Berlin) offer the administration of grassland fields. Care measures, 

fertilization, cut uses and plant protection can be recorded. However, not all documentation possibilities 

are covered here, and grazing data are very difficult to collect in these programmes. 

 

Figure 1. Schematic representation of the system architecture of the developed application WIS. Data 

about animals (www.HI-Tier.de) and fields (www.fiona-antrag.de) can be imported into the system. The 

user can make entries of the grazing and the system calculates the amount of nutrients and exports a 

pasture diary and a report of nutrient accumulation. 

The company True North Technologies (Shannon, Ireland) has developed a pasture management 

system. Grass growth is recorded with a height measuring device (Grasshopper®) and transferred to 

an app and an online programme (www.grasslandtools.ie). The Irish user can see the yield of each 

pasture. By entering the number of grazing cattle and their daily fodder requirements, the online 

programme generates a forecast for the remaining grazing days and assist in pasture planning, but it 

does not record past grazing. However, ryegrass stands in Ireland cannot be compared with the 

heterogeneous grass stands in Baden-Wuerttemberg. Grass growth values can vary considerably due 

to specific local climatic conditions and differences in soil types and grass stands, as well as intensity of 

use. 

Another grazing management support tool is Herb’Avenir (Chambre Régionale d'Agriculture de 

Bretagne, Rennes, France), which estimates the grass supply in days ahead. It also simulates the 

consequences of grassland management decisions on the grass supply for grazing and cutting for the 

following two months. 

Currently, the WIS can only be used for the documentation of grazing activities. It does not include the 

recording of yield and feed intake of grazing animals. In later stages of development, yield estimation 

by altimeter, visual estimation, or similar methods could be included in the application. In addition, daily 

grass growth can be determined for regions in Baden-Württemberg. Due to the heterogeneity of 

grassland fields in southern Germany, it would be sensible to include other parameters such as stand 

type, season, water availability and temperature. The fodder available for a specific grazing period can 
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then be calculated. The calculated amount of fodder available and the needs of the animals allow the 

adjustment of the pasture management and the forecasting of the remaining grazing days. 

A link with GPS technologies, as described by Thurner et al. (2012), could automate the documentation. 

The information for each animal could be automatically transferred into the application. Furthermore, a 

mobile version could be developed to optimize user-friendliness and to include the WIS in the farmer’s 

workflow. 

The special feature of the WIS is the support for pasture-based livestock farming, especially for small 

structured farms. It aims to promote sustainable grazing and to optimize pasture management in the 

future in order to make pasture-based livestock farming competitive. The great advantage for farmers is 

that the data about grazing for their own farm, which must be compiled for the documentation 

requirement, are already available in the WIS. These data are now available to calculate grazing fodder, 

stocking density and feed requirements. In this case, the user can greatly benefit from a compulsory 

documentation task and thus gain additional knowledge for his/her operational pasture management. 

Conclusions 

The application makes it possible to combine individual farm animals with field data and grazing times 

for documentation (digital grazing diary). This documentation can be used for FAKT support and for the 

recording of nutrient inputs within the framework of fertilizer regulations. This digital tool can be used by 

small farm businesses. It is a programme that combines several targets, with the aim of promoting 

grazing and sustainable pasture management in Baden-Wuerttemberg. 
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