JUNE 3, 2012

ESTIMATING PASTORAL GRASS INTAKE BY USE OF ACCELEROMETERS

FRANK OUDSHOORN, OLE JØRGENSEN

RESEARCH, DEPARTMENT OF ENGINEERING FACULTY OF SCIENCE AND TECHNOLOGY AARHUS UNIVERSITY

1. My background

2. Why do we need more detailed knowledge of grass intake on pasture

- 3. What methods have been used to calibrate ?
- 4. What sensors are on the marked that could be used?

ATTACHMENT OF THE SENSORS

SOME RESULTS CHECKING GRAZING TIME ESTIMATION

4

FARM DATA 2011

IS GRAZING TIME ENOUGH

 > We can say something about their eating behaviour
> We can identify individual cow specificity and possible abnormalty

>We can identify if the pasture is offering too little

However,

CORRELATION WITH GRASS INTAKE IS NOT VERY GOOD

Relative grazing time

MANUALLY COUNTED BITES

	Nb of p (Nb of	eriods ⁻ cows)	Period le	ngth, sec	Fz bite	-	Cow	Trial effect ^a
Season	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	effect	
spr09	142 (10)	147 (10)	145 ± 26	143 ± 25	52 ± 10	55 ± 10	*	*
aut09	27 (10)	48 (10)	95 ± 11	98 ± 12	60 ± 9	48 ± 9	**	***
aut10	66 (5)	21 (2)	$\textbf{139}\pm9$	141 ± 12	$\textbf{58} \pm 10$	47 ± 12	***	**

In order to try and supply extra information

INCLUDING BITES WE ARE FINDING GOOD CORRELATIONS

MODELLING TO FIND ACCURACY

ACCELEROMETER DATA 16 HZ. SHAPE MATCHING

Section of sensor data for dataset # 2, manual bite markings as vertical lines

DOES BF ESTIMATE GRAZING

Figure 7 Evaluation of measured bite frequency correspondence with IceTag grazing annotations, based on dataset number 2 with correlation threshold at 0.65

THRESHOLD VALUE FOR BITE MOVEMENTS

> when we measure more than 25 bites per minute we can be sure that 95% of the cows are grazing according to the IceTag annotations.

We tried to make a control with IGER jaw movement sensors. Program GRAZE gives annotations for Bite, chew and unknown.

Automatic = accelerometer modelling

			Man		ount matic count			-		abs		error/minute	
cow#	date	starttime			IGER count	time [s]	BPMm	BPMa	BPMi	aError^2	iError^2	aError^2	iError^2
5157	05-09-12	10:17:05	84	94	102	143,00	35,24	39,44	42,80	100	324	17,60	57,04
5157	05-09-12	10:19:43	81	117	92	139,94	34,73	50,17	39,45	1296	121	238,25	22,24
5520	05-09-12	10:01:59	44	49	94	77,81	33,93	37,78	72,48	25	2500	14,86	1486,43
5520	05-09-12	10:04:28	62	43	115	120,00	31,00	21,50	57,50	361	2809	90,25	702,25
5520	05-09-12	10:07:12	45	45	128	135,06	19,99	19,99	56,86	0	6889	0,00	1359,53
6331	05-09-12	09:56:56	125	103	N/A	124,81	60,09	49,51	N/A	484		111,85	N/A
6331	05-09-12	09:59:21	130	104	N/A	134,31	58,07	46,46	N/A	676		134,90	N/A
6518	05-09-12	10:10:38	72	71	N/A	137,31	31,46	31,02	N/A	1		0,19	N/A
6518	05-09-12	10:13:22	77	77	N/A	147,44	31,34	31,34	N/A	0	I	0,00	N/A

	MSE		MSE per 60sec	
var	459	3559	109	900
std	21	60	10	30
var	501		120	
std	22		11	

THRESSHOLD BITE FREQUENCY TO DETERMINE GRAZING

Bite frequency, first 24 hours . Horizontal line indicates a reasonable bite frequency vs grazing threshold.

INNOVATIVE GRAZING FRANK **OUDSHOORN**

INNOVATIVE GRAZING FRANK **OUDSHOORN**