Meeting of the EGF-working group grazing « Research methodology of grazing » Kiel, August 29

Modelling herbage intake for predicting performance: the example of INRAtion software

Rémy DELAGARDE, Philippe FAVERDIN, Christine BARATTE, Jean-Louis PEYRAUD

INRA, UMR Production du Lait, Saint-Gilles, France

History

 From 30 years: INRA Fill and Feed Unit systems All ruminants, all feeds Only indoors feeding INRAtion software

2000-2003:

Grazemore European project (Mayne et al.) Development of Grazeln model (Peyraud et al.)

2007: Inclusion of GrazeIn model in INRAtion 4.0

 2011: Full model published in Grass and Forage Science (Faverdin et al., Delagarde et al.)

Adaptation to grazing situations

Principle: grazing intake = relative to voluntary intake

2 grazing systems: rotational and continuous

For each grazing system, 2 sources of limitations:

- Pasture availability (allowance, mass)
- Time availability (access time)

General framework of the INRAtion pasture intake model

Prediction of grazing conditions effects on herbage intake by grazing dairy cows

Relative herbage intake (% indoors voluntary herbage intake)

Factors affecting herbage intake at grazing

Animal	Sward	Grazing management	Supplements	
Age Parity LW BCS Growth Peak milk DIM Breed	Botanical comp Species OMD Fibre CP DM Sward height Herbage mass	Grazing system Stocking rate H. Allowance Residence time Time of access	Forages Concentrates (amount, nutritive values)	
Strain	Bulk density % dead % lamina	Season, T	Neather n, Temperature, Rain, Wind	

Other INRA grazing intake models for dairy cows

INRA Feed Tables 2007: Simplified equations from INRAtion model based on pre- and post-grazing sward height (english version in 2010-2011)

Pâtur'In (Delaby et al.): Software to assist grazing management of dairy cows (herd, paddocks, pasture growth, decision rules)

Pathurt N = The grazing organizer - [Diary grazing simulation - IGC2005 SIM] Image: Simulation Events Graphs Window 2 Parameters Grass Simulation Events Graphs Window 2 Image: Simulation Events Graphs Window 2 Image: Simulation Events Graphs Window 2 Padd 1: 240 ha Simulation Events Graphs Window 2 Image: Simulation Events Graphs Window 2 Image: Simulation Events Graphs Window 2 Padd 1: 240 ha Simulation Events Graphs Window 2 Image: Simulation Events Graphs Window 2 Image: Simulation Events Graphs Window 2 Padd 1: 240 ha Simulation Events Graphs Window 2 Image: Simulation Events Graphs Window 2 Image: Simulation Events Graphs Window 2 Simulation Events Graphs Window 2 Image: Simulation Events Graphs Window 2 Image: Simulation Events Graphs Window 2 Image: Simulation Events Graphs Window 2 Padd 2: 200 ha Simulation Events Graphs Window 2 Image: Simulation Events Graphs Window 2 Image: Simulation Events Graphs Window 2 Store Simulation Events Graphs Window 2 Image: Simulation Events Graphs Window 2 Image: Simulation Events Graphs Window 2 Store Simulation Events Graphs Window 2 Simulation Events Graphs Window 2 Image: Simulation Events Graphs Window 2 Store Simulation Events Graphs Window 2 Simulation Events Graphs Window 2 <

Alimentation des bovins, ovins

Besoins des animaux – Valeurs des aliments

Quæ

et caprins

Tables INRA 2007

Prediction of dairy cows pasture intake according to pre- and post-grazing sward height

Discussion: Validation

Objectives: Precision, robustness
 Time-consuming, but necessary (improvements)

Internal validation
 Simulations (virtual experiments)
 ⇒ Response laws to inputs and interactions

External validation

Predicted vs. actual values (independent data) Global precision

(INRAtion: 304 herds, TEAGASC and INRA, actual DMI 10-22 kg MPE: 11% MPE, 1.6 kg DM)

Discussion: What we need to predict ?

• Objective of the model:

Grazing processes, grazing management Scale of approach (possible integration ?) minute ◀ ► day ◀ ► year Need for different input variables (research model, practical tool ?)

• Milk production:

Responses law from energy and protein supply (relative to potential production) Not yet included in INRAtion

Thank you for your attention

lins