N-Alkanes: A technique to measure herbage intake in dairy cows

Mary McEvoy

Grassland Science Research Dept., Animal & Grassland Research and Innovation Centre, Teagasc, Ireland

Background

- Herbage intake influences animal performance at grass
- Sward cutting used to estimate herd intake
 - Poor estimation of individual animal intake
- n-alkane method developed and modified
 - Mayes et al., 1986
 - Dillon and Stakelum, 1989

Introduction

- What are n-alkanes?
 - \square Long-chain (C_{25} to C_{35}) hydrocarbons
 - □ Present in cuticular wax of plants
 - □ In grass odd-numbered chain lengths (C29, C31 and C33) predominate over even-numbered chain lengths
 - □ Used as fecal markers to estimate herbage intake
 - □ Incomplete recovery of alkanes in feces
 - □ Adjacent chain lengths have similar recoveries

Concentration of n-alkanes in cuticular wax of some temperate pasture species

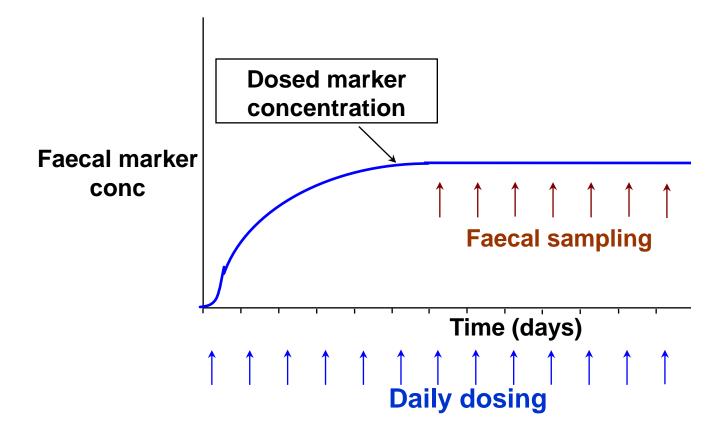
	C ₂₇	C ₂₈	C ₂₉	C ₃₀	C ₃₁	C ₃₂	C ₃₃	C ₃₅
L. Perenne	19	5	73	9	137	9	116	18
L. Multiflorum	105	8	260	11	250	4	43	0
D. Glomerata	20	2	38	2	58	2	21	0
T. Repens	38	7	109	5	67	1	7	0

(Source: Dove and Mayes, 1996)

- This is a review of a number of studies
- Odd-number alkanes predominate
- •Species differences in pattern of alkane concentrations

M

Method Outline


- Method of Mayes et al., (1986), modified by Dillon and Stakelum (1989)
 - Animal dosed with synthetic even-numbered alkane
 - Offered herbage which has been sampled and contains naturally occurring oddnumbered alkane
 - Herbage intake is calculated from the alkane dose, alkane content in the herbage and the ratio of the dosed and natural alkanes in the feces

Procedure

- Cow dosed twice daily (am and pm)
- For 12 consecutive days
- With paper pellet containing 500 mg of dotriacontane (C₃₂-alkane)
- Faecal samples collected from d 6 to d 12
 - In both morning and evening
 - □ In field collect sample when voided
 - □ In holding yard rectal grab samples
 - □ Stored at -20 C
- Faecal sample preparation
 - Thawed
 - □ Bulked by cow (10g/cow per d)
 - □ Dried at 40 C for 48 hrs
 - □ Milled through a 1-mm screen
 - □ Analysed for C₃₂ and C₃₃

Measuring faecal output

- Dose with a known amount of alkane not in the feed (C₃₂)
- Ensure stable excretion in the feces

Procedure

- Herbage representative of what cows graze
 - □ sampled from each paddock on days 5 to 11
 - □ sample at similar time each day
 - □ Two samples of 25 individual snips are taken from the grazing area (depending on paddock size)
 - □ Stored at -20 C
- Sample preparation
 - □ Bowl-chopped
 - □ Freeze-dried
 - Milled and analysed for C₃₃

м

Intake calculation

 N-alkane analysis to determine the ratio of C₃₃ (tritriacontane) concentration in herbage and faeces

Grass DMI (kg) =
$$\frac{(F_i)(F_j) \times (D_j)}{(H_i - (F_i)(F_j) \times (H_j))}$$

F_i and H_i are concentration of natural odd-chain n-alkane in faeces and pasture (mg kg⁻¹ of DM)

F_j and H_j concentration of even-chain n-alkane in faeces and pasture (mg kg⁻¹ of DM)

D_i dose rate of even-chain n-alkane (mg d⁻¹)

Comparison to other methods

■ Herbage removed R²= 0.85

(McEvoy et al., 2007)

Better than herbage removed or energy calculations

(Smit et al., 2005)

- Time consuming & delay for results
- Cost

1

Benefits of n-alkane technique

- Provides estimates of individual animal intake
- Method can accommodate feeding of supplements
- Can estimate diet composition
 - □ Plant species
 - □ Plant cultivars
 - □ Plant parts
 - □ Plant communities

(Dove and Mayes, 1996)

Single analytical process

.

Sources of error

- Diurnal pattern of n-alkane excretion
 - □ Dosing twice daily to reduce variation in feces
 - 6-day dosing pattern stabilises excretion
- Herbage sampling
 - □ Animal selection
 - □ Plant species
- Animal consumption of synthetic alkane
 - □ Dose in paper pellet
 - □ Offered in concentrate
- Sample preparation
 - □ Drying method unlikely to affect n-alkane in herbage (Dove and Mayes 1991)
 - Drying method may affect n-alkane in feces

Conclusions

- Minimise sources of error throughout procedure
- Ensure accurate sampling of feces and herbage
- N-alkane technique provides an accurate method to estimate individual animal intakes at grass