

Roberta Rossi, Ph.D

Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA)

Centro di ricerca Zootecnia e Acquacoltura (CREA-ZA)

Sede di servizio : Bella

Soil proximal sensing

Geophysical prospection

Contribute on the use Resistivity **Methods in Agriculture**

Soil electrical resistivity (ER) or its inverse Soil electrical conductivity (EC) Is one of the most used proxies of soil spatial variability in agriculture

Oversimplifying : The final result is 2D or 3D map of subsurface resistivity distribution

Electrical resistivity tomography Is a **soil imaging technique** that can complement crop sensing :

Resistive materials:

Rock fragments Voids (soil porosity)

DC – resistivity survey

Field Methodology

Static equipment : metal electrods in line

Moving electrodes: toothed wheels

Resistivity methods : static systems

Our team started in **2008** with **static equipment** for high **resolution** 2D and 3D mapping of soil biophysical properties

- Amato, M., Basso, B., Celano, G., Bitella, G., Morelli, G., & Rossi, R. (2008). In situ detection of tree root distribution and biomass by multi-electrode resistivity imaging. Tree \checkmark physiology, 28(10), 1441-1448.
- Rossi, R., Amato, M., Bitella, G., Bochicchio, R., Ferreira Gomes, J. J., Lovelli, S., ... & Favale, P. (2011). Electrical resistivity tomography as a non-destructive method for mapping root biomass in an orchard. European Journal of Soil Science, 62(2), 206-215.
- Amato, M., Bitella, G., Rossi, R., Gómez, J. A., Lovelli, S., & Gomes, J. J. F. (2009). Multi-electrode 3D resistivity imaging of alfalfa root zone. European Journal of Agronomy, 31(4), 213-222 \checkmark
- Rossi, R., Amato, M., Pollice, A., Bitella, G., Gomes, J. J., Bochicchio, R., & Baronti, S. (2013). Electrical resistivity tomography to detect the effects of tillage in a soil with a variable rock fragment content. European Journal of Soil Science, 64(2), 239-248.

Static systems: points of strength and weakness

Flexible resolution (depends on the distance between electrodes)

From centimetric targets (sol cracks / roots) to gravel lenses, water table, buried channels

✓ Labour demanding ✓ Poor data coverage ✓ Require optimal soil-electrodes

contact

✓ Suitable for detailed studies , for time-lapse measurements

✓ The poor data coverage and the labour required makes it unsuitable for mapping variability at field /plot scale

.....Than we moved to dynamic systems......

Rossi, Roberta, et al. "Using an automatic resistivity profiler soil sensor on-the-go in precision viticulture." Sensors 13.1 (2013): 1121-1136. Rossi, R., Pollice, A., Bitella, G., Bochicchio, R., D'Antonio, A., Alromeed, A. A., ... & Amato, M. (2015). Soil bulk electrical resistivity and forage ground cover: nonlinear models in an alfalfa (Medicago sativa L.) case study. Italian Journal of Agronomy, 10(4), 215-219.

Moving systems are used to map resistivity at field scale

The fixed electrodes (*nails*) are replaced by **toothed wheels towed across the field** to obtain a wide coverage **at** multiple depths. It slices the soil profile in three horizontal parallel planes (soil strata 0-0.5 m; 0-1 m; 1.5 m)

The system is very fast an average of 40 ha can be mapped in day of work real time maps of ER to be used as a basis for directed sampling schemes

Information on deep soil variability can be very important for deep rooted perennials that rely on stored \checkmark water nevertheless it is often overlooked due to methodological difficulties

Case study: coupling soil information and crop sensing in a forage crop: Non-linear relationship between NDVI and RESISTIVITY in Alfalfa

We regressed NDVI and ER at 1.5 m and applied a target sampling strategies

6 Sampling sites (soil trenches) were chosen along a gradient of ER and in places where the **ER-NDVI** relationship changed

Multidepth soil Resistivity

0.5 m

1 m

Bivariate measure of spatial association between variables

ER and NDVI showed a fairly similar spatial structure especially if the deepest resistivity is considered.

Figure 9 Left - Field zonation . From left 1) pooled GAM estimated smoothing

distances

ER was correlated to the presence of permanent soil features This 7 ha field showed a high soil variability within relatively short scale

- Identify Texture related variability allowed:
- Optimized root/soil sampling strategy
- Optimal placement of monodimensional sensors (moisture probes)

NDVI was measured 4 times across 2 years showed a consistent nonlinear relationship with resistivity. The non –linearity between NDVI and ER was used as a basis for field zonation

We split the field in areas with different SOIL- PLANT relationship, possibly requiring different management options

: Zone 1 V3 < 15.5 Ohm m) poorly drained soils **risk of waterlogging** in wet years (precision drainage / precision planting)

Zone ii. (15.5 Ohm m < V3 < 25 Ohm m) **ER** acts almost linearly and consistently on NDVI, ER can be used as prescription map

. Zone iii. (V3 > 25 Ohm m) the area of **the** hardpans (non alterable soii features/precision planting / conservative water use)

Conclusions

This preliminary data support the hypothesis that perennials like alfalfa tend to develop persistent spatial features linked to deep soil variability, addressing the importance of using multi-depth soil information for designing specific precision farming strategies for **perennial crops**.

Conclusions

- ✓ Proximal soil sensing can integrate crop sensing and help discerning the causes of variability; soil related constraint to plant productivity
- ✓ Moving systems are very fast and efficient : can be used to map several hectars in day of work, the fast data processing (few minutes) is compatible with a post-survey soil sampling strategy
- ✓ Soil maps can be used to optimize soil sampling and for the optimal placement of monodimensional sensors (moisture probes)
- \checkmark Information on deep soil variability can be important for perennials such as alfalfa that rely on deep stored water . This information is often overlooked because of methodological difficulties. Can be use to bridge a gap to design sitespecific management options for perennials

Thank you for your attention